已知雙曲線的離心率,過的直線到原點的距離是 
(1)求雙曲線的方程;
(2)已知直線交雙曲線于不同的點C,D且C,D都在以B為圓心的圓上,求k的值.

(1)(2)

解析試題分析:(1)原點到直線AB:的距離.
故所求雙曲線方程為
(2)把中消去y,整理得 .
設(shè)的中點是,則

,故所求k=±
考點:雙曲線方程及直線與雙曲線位置關(guān)系
點評:直線與雙曲線的位置關(guān)系常聯(lián)立方程利用韋達定理

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的兩焦點是F1(0,-1),F(xiàn)2(0,1),離心率e=
(1)求橢圓方程;
(2)若P在橢圓上,且|PF1|-|PF2|=1,求cos∠F1PF2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的焦點在軸上,離心率為,對稱軸為坐標軸,且經(jīng)過點
(I)求橢圓的方程;
(II)直線與橢圓相交于、兩點, 為原點,在上分別存在異于點的點、,使得在以為直徑的圓外,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,設(shè)、分別是圓和橢圓的弦,且弦的端點在軸的異側(cè),端點、的橫坐標分別相等,縱坐標分別同號.

(Ⅰ)若弦所在直線斜率為,且弦的中點的橫坐標為,求直線的方程;
(Ⅱ)若弦過定點,試探究弦是否也必過某個定點. 若有,請證明;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(10分)過直角坐標平面中的拋物線,直線過焦點且與拋物線相交于,兩點.
⑴當直線的傾斜角為時,用表示的長度;
⑵當且三角形的面積為4時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分16分)
橢圓:的左、右頂點分別、,橢圓過點且離心率.

(1)求橢圓的標準方程;
(2)過橢圓上異于、兩點的任意一點軸,為垂足,延長到點,且,過點作直線軸,連結(jié)并延長交直線于點,線段的中點記為點.
①求點所在曲線的方程;
②試判斷直線與以為直徑的圓的位置關(guān)系, 并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分) 已知橢圓的離心率,A,B
分別為橢圓的長軸和短軸的端點,為AB的中點,O為坐標原點,且.
(1)求橢圓的方程;
(2)過(-1,0)的直線交橢圓于P,Q兩點,求△POQ面積最大時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分16分)如圖,是橢圓的左、右頂點,橢圓的離心率為,右準線的方程為.

(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點,直線于點,以為直徑的圓記為.
①若恰好是橢圓的上頂點,求截直線所得的弦長;
②設(shè)與直線交于點,試證明:直線軸的交點為定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題13分)曲線上任意一點M滿足, 其中F(-F( 拋物線的焦點是直線y=x-1與x軸的交點, 頂點為原點O.
(1)求,的標準方程;
(2)請問是否存在直線滿足條件:①過的焦點;②與交于不同
兩點,且滿足?若存在,求出直線的方程;若不
存在,說明理由.

查看答案和解析>>

同步練習冊答案