設(shè)函數(shù)f(x)=(1-2x310,則f′(1)等于( )
A.0
B.60
C.-1
D.-60
【答案】分析:設(shè)1-2x3=u(x),則f(x)=[u(x)]10,利用符合函數(shù)的求導(dǎo)法則,得到f′(x)=10[u(x)]9•[u′(x)],把x=1代入導(dǎo)函數(shù)中,即可求出f′(1)的值.
解答:解:求導(dǎo)得:f′(x)=(-6x2)•10(1-2x39=(-60x2)•(1-2x39,
把x=1代入導(dǎo)函數(shù)得:f′(1)═(-60)•(1-2)9=60.
故選B
點(diǎn)評(píng):此題考查了導(dǎo)數(shù)的運(yùn)算,涉及的求導(dǎo)法則有an=nan-1,C′=0(C為常數(shù)),以及符合函數(shù)求導(dǎo)的法則,熟練掌握求導(dǎo)法則是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax3-3x+1(x∈R),若對(duì)于任意的x∈[-1,1]都有f(x)≥0成立,則實(shí)數(shù)a的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•安徽)設(shè)函數(shù)f(x)=ax-(1+a2)x2,其中a>0,區(qū)間I={x|f(x)>0}
(Ⅰ)求I的長(zhǎng)度(注:區(qū)間(a,β)的長(zhǎng)度定義為β-α);
(Ⅱ)給定常數(shù)k∈(0,1),當(dāng)1-k≤a≤1+k時(shí),求I長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•浦東新區(qū)二模)記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對(duì)任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素.
(1)判斷函數(shù)f(x)=-x+1,g(x)=2x-1是否是M的元素;
(2)設(shè)函數(shù)f(x)=log2(1-2x),求f(x)的反函數(shù)f-1(x),并判斷f(x)是否是M的元素;
(3)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對(duì)任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素,
例如f(x)=-x+1,對(duì)任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
(1)設(shè)函數(shù)f(x)=log2(1-2x),判斷f(x)是否是M的元素,并求f(x)的反函數(shù)f-1(x);
(2)f(x)=
axx+b
∈M
(a<0),求使f(x)<1成立的x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)設(shè)函數(shù)f(x)=xlog2x+(1-x)log2(1-x)(0<x<1),求f(x)的最小值.
(2)設(shè)正數(shù)P1,P2,P3,…P2n滿足P1+P2+…P2n=1,求證:P1log2P1+P2log2P2+P3log2P3+…+P2nlog2P2n≥-n.

查看答案和解析>>

同步練習(xí)冊(cè)答案