已知數(shù)列{an}滿足:a1=1,an+1=2an+1(n∈N*),則a12=( 。
A、210-1B、211-1C、212-1D、213-1
分析:把給出的遞推式變形,構(gòu)造出新的等比數(shù)列,由等比數(shù)列的通項(xiàng)公式求出an的表達(dá)式,則答案可求.
解答:解:在數(shù)列{an}中,
由an+1=2an+1,得an+1+1=2(an+1),
∵a1=1,∴a1+1=2≠0,
an+1+1
an+1
=2

則數(shù)列{an+1}是以2為首項(xiàng),以2為公比的等比數(shù)列,
an+1=2•2n-1=2n,an=2n-1
a12=212-1
故選:C.
點(diǎn)評(píng):本題考查了數(shù)列的遞推式,考查了等比關(guān)系的確定,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案