精英家教網 > 高中數學 > 題目詳情

設3a=4,3b=12,3c=36,那么數列a,b,c

[  ]

A.是等差數列但不是等比數列

B.是等比數列但不是等差數列

C.既是等差數列又是等比數列

D.既不是等差數列也不是等比數列

答案:A
解析:

  判斷三個數是否成等差數列或等比數列,就是看是否滿足等差中項或等比中項的關系.由已知條件,對等式兩邊取以3為底的對數,解得a=log34,b=log312,c=log336.

  所以驗證可得ac=log3144=2b,acb2

  故數列a,bc是等差數列但不是等比數列.答案選A.


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:013

設全集U={12,3,4,5},且AU,BU,若AB={2},( UA)B={4},( UA)(UB)={1,5},則下列結論正確的是

A3A,且3B                                             

B3A,但3B

C3A,但3B                                             

D3A,且3B

 

查看答案和解析>>

科目:高中數學 來源:高一(上)數學單元同步練習及期末試題(一) 第一單元 集合 題型:013

設U={1,2,3,4,5},A,B為U的子集,若A∩B={2},(CUA)∩B={4},(CUA)∩(CUB)={1,5},則下列結論正確的是

[  ]
A.

3A,3B

B.

3A,3∈B

C.

3∈A,3B

D.

3∈A,3∈B

查看答案和解析>>

同步練習冊答案