已知f(x)=
(2a-1)x+3a(x<1)
logax(x≥1)
是其定義域上的減函數(shù),則實(shí)數(shù)的取值范圍是
1
5
≤a<
1
2
1
5
≤a<
1
2
,
分析:由f(x)在定義域上遞減,知y=(2a-1)x+3a遞減,y=logax遞減,且(2a-1)×1+3a≥loga1,由此可得a的不等式組,解出即得答案.
解答:解:由f(x)在定義域上遞減,知y=(2a-1)x+3a遞減,y=logax遞減,且(2a-1)×1+3a≥loga1,
所以
2a-1<0
0<a<1
(2a-1)×1+3a≥loga1
,解得
1
5
≤a<
1
2

故答案為:
1
5
≤a<
1
2
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性,屬中檔題,借助圖形更易分析.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=lnx,g(x)=
1
2
x2
+mx+
7
2
(m<0),直線l與函數(shù)f(x)的圖象相切,切點(diǎn)的橫坐標(biāo)為1,且直線l與函數(shù)g(x)的圖象也相切.
(1)求直線l的方程及實(shí)數(shù)m的值;
(2)若h(x)=f(x+1)-g′(x)(其中g(shù)′(x)是g(x)的導(dǎo)函數(shù)),求函數(shù)h(x)的最大值;
(3)當(dāng)0<b<a時(shí),求證:f(a+b)-f(2a)<
b-a
2a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在(-1,1)上的奇函數(shù),當(dāng)x∈(0,1)時(shí),f(x)=2x,
(1)求函數(shù)f(x)的解析式;
(2)已知f(x)≤2a恒成立,求常數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)是定義在(-1,1)上的奇函數(shù),當(dāng)x∈(0,1)時(shí),f(x)=2x,
(1)求函數(shù)f(x)的解析式;
(2)已知f(x)≤2a恒成立,求常數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省贛州市贛縣中學(xué)高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)是定義在(-1,1)上的奇函數(shù),當(dāng)x∈(0,1)時(shí),f(x)=2x
(1)求函數(shù)f(x)的解析式;
(2)已知f(x)≤2a恒成立,求常數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案