(本小題12分)如圖,函數(shù)y=|x|在x∈[-1,1]的圖象上有兩點A、B,AB∥
Ox軸,點M(1,m)(m是已知實數(shù),且m>)是△ABC的邊BC的中點。
(Ⅰ)寫出用B的橫坐標(biāo)t表示△ABC面積S的函數(shù)解析式S=f(t);
(Ⅱ)求函數(shù)S=f(t)的最大值,并求出相應(yīng)的C點坐標(biāo)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I)判斷的奇偶性;
(Ⅱ)設(shè)函數(shù)在區(qū)間上的最小值為,求的表達式;
(Ⅲ)若,證明:方程有兩個不同的正數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)
已知定義在R上的函數(shù)是奇函數(shù)
(1)求的值;
(2)判斷的單調(diào)性,并用單調(diào)性定義證明;
(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求函數(shù),的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知定義域為的函數(shù)是奇函數(shù).
(1)求的值
(2)判斷函數(shù)的單調(diào)性
(3)若對任意的,不等式恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)滿足,且有唯
一實數(shù)解。
(1)求的表達式 ;
(2)記,且,求數(shù)列的通項公式。
(3)記 ,數(shù)列{}的前 項和為 ,是否存在k∈N*,使得
對任意n∈N*恒成立?若存在,求出k的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某企業(yè)生產(chǎn)一種產(chǎn)品時,固定成本為5 000元,而每生產(chǎn)100臺產(chǎn)品時直接消耗成本要增加2500元,市場對此商品年需求量為500臺,銷售的收入函數(shù)為(萬元)(0≤≤5),其中是產(chǎn)品售出的數(shù)量(單位:百臺)
(1)把利潤表示為年產(chǎn)量的函數(shù);(2)年產(chǎn)量多少時,企業(yè)所得的利潤最大;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知定義域為的函數(shù)滿足.
(1)若,求;又若,求;
(2)設(shè)有且僅有一個實數(shù),使得,求函數(shù)的解析表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某民營企業(yè)生產(chǎn)兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,產(chǎn)品的利潤與投資成正比,其關(guān)系如圖甲,產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖乙(注:利潤與投資單位:萬元)

(Ⅰ)分別將兩種產(chǎn)品的利潤表示為投資(萬元)的函數(shù)關(guān)系式;
(Ⅱ)該企業(yè)已籌集到10萬元資金,并全部投入兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元?

查看答案和解析>>

同步練習(xí)冊答案