3.已知集合A={x|x≥4},函數(shù)g(x)=$\sqrt{1-x+a}$的定義域為B,若A∩B=∅,則實數(shù)a的取值范圍是(-∞,3).

分析 求出集合B,利用A∩B=∅,即可得到結(jié)論.

解答 解:要使函數(shù)g(x)有意義,則1-x+a≥0,
即x≤1+a,即B={x|x≤1+a},
∵A∩B=∅,
∴1+a<4,
即a<3,
故答案為:(-∞,3)

點評 本題主要考查集合關(guān)系的應用,利用函數(shù)定義域的求法求出集合B是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知直線a,b,平面α,β,a?α,b?α,則a∥β,b∥β是α∥β的( 。
A.充分但不必要條件B.必要但不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.“m>1“是“函數(shù)f(x)=3x+m-3$\sqrt{3}$在區(qū)間[1,+∞)無零點”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,以E的四個頂點為頂點的四邊形的面積為4$\sqrt{3}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)A,B分別為橢圓E的左、右頂點,P是直線x=4上不同于點(4,0)的任意一點,若直線AP,BP分別與橢圓相交于異于A,B的點M、N,試探究,點B是否在以MN為直徑的圓內(nèi)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.設(shè)f(x)=max$\left\{{{x^2}-4x+3,\frac{3}{2}x+\frac{1}{2},3-x}\right\}$,其中max{a,b,c}表示三個數(shù)a,b,c中的最大值,則f(x)的最小值是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x,x>0}\\{{x}^{2}-1,x≤0}\end{array}\right.$,則f(f(-2))=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.給出下列命題:
①半徑為2,圓心角的弧度數(shù)為$\frac{1}{2}$的扇形面積為$\frac{1}{2}$;
②在△ABC中,A<B的充要條件是sinA<sinB;
③在△ABC中,若AB=4,AC=2$\sqrt{6}$,B=$\frac{π}{3}$,則△ABC為鈍角三角形;
④函數(shù)f(x)=lnx-2+x在區(qū)間(1,e)上存在零點.
其中真命題的序號是②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在用反證法證明“?實數(shù)x,x2+x+1>0”時,其假設(shè)是$?{x_0}∈R,x_0^2+{x_0}+1≤0$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.執(zhí)行如圖的程序框圖,則輸出K的值為(  )
A.98B.99C.100D.101

查看答案和解析>>

同步練習冊答案