已知函數(shù)f(x)=2sinxcosx+2cos2x+1.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間[-,0]上的最大值和最小值.
【答案】分析:(Ⅰ)把函數(shù)解析式利用二倍角的正弦、余弦函數(shù)公式化簡(jiǎn),再利用兩角和與差的正弦函數(shù)公式積特殊角的三角函數(shù)值化為一個(gè)角的正弦函數(shù),找出ω的值,代入周期公式,即可求出函數(shù)的最小正周期;
(Ⅱ)由x的范圍求出這個(gè)角的范圍,利用正弦函數(shù)的圖象與性質(zhì)即可求出f(x)在區(qū)間[-,0]上的最大值與最小值.
解答:解:(Ⅰ)f(x)=2sinxcosx+2cos2x+1
=2sinxcosx+2cos2x-1+2=sin2x+cos2x+2=sin(2x+)+2,
∵ω=2,∴T==π,
則函數(shù)f(x)的最小正周期為π;
(Ⅱ)∵x∈[-,0]時(shí),∴2x+∈[-,],
當(dāng)2x+=,即x=0時(shí),sin(2x+)=sin=,
∴f(x)取得最大值3;
當(dāng)2x+=-,即x=-時(shí),sin(2x+)=sin(-)=-1,
∴f(x)取得最小值2-
點(diǎn)評(píng):此題考查了二倍角的正弦、余弦函數(shù)公式,兩角和與差的正弦函數(shù)公式,以及正弦函數(shù)的圖象與性質(zhì),熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實(shí)數(shù)a,b(a<b),使y=f(x)的定義域?yàn)椋╝,b)時(shí),值域?yàn)椋╩a,mb),則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時(shí),函數(shù)的圖象與x軸有兩個(gè)不同的交點(diǎn);
(2)如果函數(shù)的一個(gè)零點(diǎn)在原點(diǎn),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無(wú)窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案