設(shè)函數(shù)f(x)=|x-2|+|x-a|,x∈R
(1)當(dāng)a=1時(shí),求不等式f(x)≤2的解集.
(2)若f(x)≥a在R上恒成立,求實(shí)數(shù)a的最大值.
分析:(1)當(dāng)a=1時(shí),f(x)=|x-2|+|x-1|,由此利用零點(diǎn)分段討論法能求出不等式f(x)≤2的解集.
(2)|x-2|+|x-a|表示的是在數(shù)軸上到2,a兩點(diǎn)距離,距離最小值就是|a-2|,若f(x)≥a對x∈R恒成立,則只要滿足|a-2|≥a,由此能求出實(shí)數(shù)a的最大值.
解答:解:(1)當(dāng)a=1時(shí),f(x)=|x-2|+|x-1|,
由x-2=0,得x=2;由x-1=0得x=1.
①當(dāng)x≥2時(shí),f(x)=x-2+x-1=2x-3≤2,解得2≤x≤
5
2

②當(dāng)1≤x<2時(shí),f(x)=2-x+x-1=1≤2,成立,故1≤x<2;
③當(dāng)x<1時(shí),f(x)=2-x+1-x=3-2x≤2,解得
1
2
≤x<1

綜上所述不等式f(x)≤2的解集為{x|
1
2
≤x≤
5
2
}.
(2)|x-2|+|x-a|表示的是在數(shù)軸上到2,a兩點(diǎn)距離,距離最小值就是|a-2|,
若f(x)≥a對x∈R恒成立,
則只要滿足|a-2|≥a,解得a≤1.
∴實(shí)數(shù)a的最大值是1.
點(diǎn)評:本題考查不等式的解集的求法,考查滿足條件的實(shí)數(shù)的最大值的求法,解題時(shí)要認(rèn)真審題,注意零點(diǎn)分段討論法和絕對值的含義的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)锳,若存在非零實(shí)數(shù)t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調(diào)函數(shù).如果定義域?yàn)閇0,+∞)的函數(shù)f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是( 。
A、[-5,5]
B、[-
5
,
5
]
C、[-
10
,
10
]
D、[-
5
2
,
5
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時(shí),f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當(dāng)x∈[-1,0]時(shí)f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個(gè)無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個(gè)不同的根.
其中真命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案