已知集合A={x|x2-mx+m=0},B={x|x2-4x<0},且A∩B的元素個(gè)數(shù)有且只有一個(gè),求m的取值范圍.
分析:根據(jù)題意易得B=(0,4),A∩B有且只有一個(gè)元素,A只能有一個(gè)根在(0,4)中,判別式△=m2-4m,當(dāng)△=0時(shí),x2-mx+m=0只有一解;當(dāng)△>0時(shí),可利用f(0)•f(4)<0求m的范圍,求出后檢驗(yàn)方可,同時(shí)討論當(dāng)f(0)=0與f(4)=0的情況.
解答:解:B={x|0<x<4}
即函數(shù)f(x)=x2-mx+m在x∈(0,4)上有且只有一解     (2分)
(1)當(dāng)△=0時(shí),即m=0或4時(shí),分別驗(yàn)證,可得,當(dāng)m=4
時(shí),x=2,符合題意,成立                             (2分)
(2)當(dāng)f(0)•f(4)<0時(shí),即m<0或m>
16
3
時(shí),成立      (6分)
(3)當(dāng)f(0)=0時(shí),不合題意,舍去
(4)當(dāng)f(4)=0時(shí),m=
16
3
代入,可得,兩個(gè)解分別為4和
4
3
,符合題意,成立      (2分)
綜上所述,m的取值范圍是m<0或m≥
16
3
或m=4(2分)
點(diǎn)評(píng):本題考查集合的包含關(guān)系判斷,難點(diǎn)在于對(duì)f(x)=x2-mx+m在x∈(0,4)上有且只有一解情況的討論,重點(diǎn)考查分類討論思想與轉(zhuǎn)化思想的運(yùn)用,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、已知集合A={x|x>1},集合B={x|x-4≤0},則A∪B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x<1},B={x|x(x-2)≤0},則A∩B=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x<-2或3<x≤4},B={x||x-1|≤4}
求:
(1)CRA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x≥1},B={x|x>2},則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•德陽三模)已知集合A={x|
x-2
x+1
≤0},B={y|y=cosx,x∈R}
.則A∩B為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案