已知函數(shù)f(x)=lnx-ax(a∈R).
(Ⅰ) 求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 當(dāng)a>0時(shí),求函數(shù)f(x)在[1,2]上最小值.
分析:(Ⅰ)求出函數(shù)f(x)=lnx-ax(a∈R)的導(dǎo)數(shù),令導(dǎo)數(shù)大于0求出函數(shù)的增區(qū)間,令導(dǎo)數(shù)小于0,求出函數(shù)的減區(qū)間
(Ⅱ)a>0時(shí),用導(dǎo)數(shù)研究函數(shù)f(x)在[1,2]上的單調(diào)性確定出最小值,借助(Ⅰ)的結(jié)論,由于參數(shù)的范圍對(duì)函數(shù)的單調(diào)性有影響,故對(duì)其分類討論,
解答:解:(Ⅰ)函數(shù)的定義域是(0,+∞)
∵f(x)=lnx-ax
∴f′(x)=
-a
當(dāng)a≤0時(shí),f′(x)>0,函數(shù)在定義域上是增函數(shù);
當(dāng)a>0時(shí),令導(dǎo)數(shù)為0解得x=
,
當(dāng)x>
時(shí),導(dǎo)數(shù)為負(fù),函數(shù)在(
,+∞)上是減函數(shù),
當(dāng)x<
時(shí),導(dǎo)數(shù)為正,函數(shù)在(0,
)上是增函數(shù)
(Ⅱ)由(Ⅰ)的結(jié)論知
當(dāng)[1,2]⊆[
,+∞)時(shí),即a≥1時(shí),函數(shù)函數(shù)f(x)在[1,2]上是減函數(shù),故最小值為f(2)=ln2-2a
當(dāng)[1,2]⊆(0,
]時(shí),即0<a<
時(shí),函數(shù)函數(shù)f(x)在[1,2]上是增函數(shù),故最小值為f(1)=-a
當(dāng)
∈[1,2]時(shí),函數(shù)f(x)在[1,
]上是增函數(shù),在[
,2]上是減函數(shù),故最小值為min{f(1),f(2)}
點(diǎn)評(píng):本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,解題的鍵是理解并掌握函數(shù)的導(dǎo)數(shù)的符號(hào)與函數(shù)的單調(diào)性的關(guān)系,此類題一般有兩類題型,一類是利用導(dǎo)數(shù)符號(hào)得出單調(diào)性,一類是由單調(diào)性得出導(dǎo)數(shù)的符號(hào),本題屬于第一種類型.本題的第二小問是根據(jù)函數(shù)在閉區(qū)間上的最值,本題中由于參數(shù)的存在,導(dǎo)致導(dǎo)數(shù)的符號(hào)不定,故需要對(duì)參數(shù)的取值范圍進(jìn)行討論,以確定函數(shù)在這個(gè)區(qū)間上的最值.