10.已知向量$|{\overrightarrow a}|=4$,$|{\overrightarrow b}|=3$,且$({\overrightarrow a+2\overrightarrow b})•({\overrightarrow a-\overrightarrow b})=4$,則向量$\overrightarrow a$與向量$\overrightarrow b$的夾角為$\frac{π}{3}$.

分析 通過向量的數(shù)量積的運(yùn)算,求出角的大小即可.

解答 解:設(shè)向量$\overrightarrow a$與向量$\overrightarrow b$的夾角為θ,
∵向量$|{\overrightarrow a}|=4$,$|{\overrightarrow b}|=3$,且$({\overrightarrow a+2\overrightarrow b})•({\overrightarrow a-\overrightarrow b})=4$,
∴${\overrightarrow{a}}^{2}$+$\overrightarrow{a}•$$\overrightarrow$-2${\overrightarrow}^{2}$=${\overrightarrow{a}}^{2}$+|$\overrightarrow{a}$|•|$\overrightarrow$|cosθ-2${\overrightarrow}^{2}$=16+12cosθ-18=4,
即cosθ=$\frac{1}{2}$,
∵0≤θ≤π,
∴θ=$\frac{π}{3}$,
故答案為:$\frac{π}{3}$

點(diǎn)評 本題考查向量的數(shù)量積的運(yùn)算,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在△ABC中,∠C=90°,AC=BC=a,點(diǎn)P在邊AB上,設(shè)$\overrightarrow{AP}$=λ$\overrightarrow{PB}$(λ>0),過點(diǎn)P作PE∥BC交AC于E,作PF∥AC交BC于F.沿PE將△APE翻折成△A′PE,使平面A′PE⊥平面ABC;沿PF將△BPF翻折成△B′PF,使平面B′PF⊥平面ABC.
(1)求證:B′C∥平面A′PE;
(2)是否存在正實(shí)數(shù)λ,使得二面角C-A′B′-P的大小為60°?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價(jià)收費(fèi),超過x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)x(噸),估計(jì)x的值(精確到0.01),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.“開心辭典”中有這樣的問題,給出一組數(shù),要你根據(jù)規(guī)律填出后面的幾個數(shù),現(xiàn)給出一組數(shù):$-\frac{1}{2},\frac{1}{2},-\frac{3}{8},\frac{1}{4},…,-\frac{5}{32},\frac{3}{32},…$它的第8個數(shù)可以是$\frac{1}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知△ABC中,AC=$\sqrt{2}$,BC=$\sqrt{6}$,∠ACB=$\frac{π}{6}$,若線段BA的延長線上存在點(diǎn)D,使∠BDC=$\frac{π}{4}$,則CD=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某校高考數(shù)學(xué)成績ξ近似地服從正態(tài)分布N(100,52),且P(ξ<110)=0.96,則P(90<ξ<100)的值為( 。
A.0.49B.0.48C.0.47D.0.46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某研究機(jī)構(gòu)在對線性相關(guān)的兩個變量x和y進(jìn)行統(tǒng)計(jì)分析時,得到如下數(shù)據(jù):
x4681012
y12356
由表中數(shù)據(jù)求的y關(guān)于x的回歸方程為$\hat y=0.65x+\hat a$,則在這些樣本點(diǎn)中任取一點(diǎn),該點(diǎn)落在回歸直線下方的概率為(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.自2017年2月底,90多所自主招生試點(diǎn)高校將陸續(xù)出臺2017年自主招生簡章,懷化市某學(xué)校高三年級為了提高學(xué)生自主招生考試的通過率,對A、B、C、D四所國內(nèi)知名大學(xué)2016年自主招生考試的語文和數(shù)學(xué)的控分做了如下調(diào)查:
學(xué)校ABCD
語文(x分)118120114112
數(shù)學(xué) (y分)116123114119
(Ⅰ)依據(jù)上表中的數(shù)據(jù)用最小二乘法求數(shù)學(xué)控分$\hat y$關(guān)于語文控分x的線性回歸方程$\hat y=\hat bx+\hat a$及當(dāng)某高校自主招生考試語文控分為110分時,預(yù)測該校的數(shù)學(xué)控分.
(Ⅱ)依據(jù)調(diào)查表,懷化市的這所學(xué)校從A、B、C、D四所大學(xué)任選兩所,求選出的這兩所學(xué)校的語文和數(shù)學(xué)控分都低于120分的概率.
(附:線性回歸方程$\hat y=\hat bx+\hat a$中,$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}\\ \hat a=\overline y-\hat b×\overline x\end{array}\right.$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.關(guān)于x的方程cos2x+sinx+a=0在$x∈({0,\frac{π}{2}}]$上有解,則a的取值范圍是$[{-\frac{5}{4},-1}]$.

查看答案和解析>>

同步練習(xí)冊答案