【答案】
分析:(1)f′(x)=(x-k+1)e
x,令f′(x)=0,得x=k-1.由此能求出f(x)的單調(diào)區(qū)間.
(2)當(dāng)k-1≤0時,函數(shù)f(x)在區(qū)間[0,1]上遞增,f(x)
min=f(0)=-k;當(dāng)1<k≤2時,函數(shù)f(x)在區(qū)間[0,k-1]上遞減,(k-1,1]上遞增,
;當(dāng)k>2時,函數(shù)f(x)在區(qū)間[0,1]上遞減,f(x)
min=f(1)=(1-k)e.由此能求出g(k).
(3)當(dāng)k≤1時,g(k)=-k,是減函數(shù);當(dāng)1<k≤2時,g(k)=-e
k-1,是減函數(shù);當(dāng)k>2時,g(k)=(1-k)e,是減函數(shù).由此知g(k)在(-∞,+∞)內(nèi)單調(diào)遞減.
解答:解:(1)f′(x)=(x-k+1)e
x,令f′(x)=0,得x=k-1;
所以f(x)在(-∞,k-1)上遞減,在(k-1,+∞)上遞增;
(2)當(dāng)k-1≤0,即k≤1時,函數(shù)f(x)在區(qū)間[0,1]上遞增,所以f(x)
min=f(0)=-k;
當(dāng)0<k-1≤1,即1<k≤2時,由(I)知,函數(shù)f(x)在區(qū)間[0,k-1]上遞減,(k-1,1]上遞增,所以
;
當(dāng)k-1>1,即k>2時,函數(shù)f(x)在區(qū)間[0,1]上遞減,所以f(x)
min=f(1)=(1-k)e.
綜上g(k)=
.
(3)當(dāng)k≤1時,g(k)=-k,是減函數(shù);
當(dāng)1<k≤2時,g(k)=-e
k-1,是減函數(shù);
當(dāng)k>2時,g(k)=(1-k)e,是減函數(shù).
∴g(k)在(-∞,+∞)內(nèi)單調(diào)遞減.
點評:本題考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值的應(yīng)用,考查函數(shù)單調(diào)區(qū)間的求法、函數(shù)解析式的求法和函數(shù)單調(diào)性的判斷.解題時要認(rèn)真審題,仔細(xì)解答,注意合理地進行等價轉(zhuǎn)化.