已知函數(shù),且

(1) 求m的值;   

(2) 判斷上的單調(diào)性,并給予證明;

 

【答案】

(1);(2)見解析.

【解析】本試題主要考查了函數(shù)的性質(zhì)的運(yùn)用。

解:(1)由得:,即:,解得:;…………4分

(2) 函數(shù)上為減函數(shù)。…………………6分

證明:設(shè),則

………10分

     

,即,即,

上為減函數(shù)!12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù),且

   (1)求的值域;

   (2)定義在R上的函數(shù)滿足,且當(dāng)時(shí),求在R上的解析式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆遼寧省五校協(xié)作體高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(12分)已知函數(shù),且

(1)求;

(2)判斷的奇偶性;

(3)試判斷上的單調(diào)性,并證明。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆甘肅省天水市高一上學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

(10分)已知函數(shù),且 

(1)判斷的奇偶性,并證明;

(2)判斷上的單調(diào)性,并用定義證明;

(3)若,求的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)已知函數(shù),且 

(1)判斷的奇偶性,并證明;

(2)判斷上的單調(diào)性,并證明;

(3)若,求的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆北京市高二下學(xué)期文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分8分)

已知函數(shù),且.

(1)求實(shí)數(shù)的值

(2)判斷并證明函數(shù)在上的單調(diào)性;

 

查看答案和解析>>

同步練習(xí)冊(cè)答案