【題目】在△ABC中,角A、B、C的對邊分別為a、b、c,a2=b2+c2+bc. (Ⅰ)求角A的大。
(Ⅱ)若a=2 ,b=2,求c的值.

【答案】解:(Ⅰ)∵a2=b2+c2+bc, ∴根據(jù)余弦定理,得cosA=
∵0<A<π,∴
(Ⅱ)由正弦定理 ,得

,0<B<π,
.可得
∴B=C,可得c=b=2.
【解析】(I)由余弦定理a2=b2+c2﹣2bccosA的式子,結(jié)合題意算出cosA=﹣ ,結(jié)合A為三角形內(nèi)角即可得到角A的大;(II)由正弦定理 的式子,算出sinB= 得到B= =C,從而得到得c=b,得到c的值.
【考點(diǎn)精析】通過靈活運(yùn)用余弦定理的定義,掌握余弦定理:;;即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,把函數(shù)f(x)的圖象向右平移 個(gè)單位得函數(shù)g(x)的圖象,則下面結(jié)論正確的是(
A.函數(shù)g(x)是奇函數(shù)
B.函數(shù)g(x)在區(qū)間[π,2π]上是增函數(shù)
C.函數(shù)g(x)的最小正周期是4π
D.函數(shù)g(x)的圖象關(guān)于直線x=π對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (a,b∈R)在點(diǎn) (2,f(2)) 處切線的斜率為﹣ ﹣ln 2,且函數(shù)過點(diǎn)(4, ). (Ⅰ)求a、b 的值及函數(shù) f (x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)= (k∈N*),對任意的實(shí)數(shù)x0>1,都存在實(shí)數(shù)x1 , x2滿足0<x1<x2<x0 , 使得f(x0)=f(x1)=f(x2),求k 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=x2+ex (x<0)與g(x)=x2+ln(x+a)圖象上存在關(guān)于y軸對稱的點(diǎn),則a的取值范圍是(
A.(﹣
B.(
C.(
D.(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的參數(shù)方程為 (α為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程,并說明其表示什么軌跡.
(2)若直線的極坐標(biāo)方程為sinθ﹣cosθ= ,求直線被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}中,Sn是前n項(xiàng)和,且S3=S8 , S7=Sk , 則k的值為(
A.4
B.11
C.2
D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+ax2 , g(x)= +x+b,且直線y=﹣ 是函數(shù)f(x)的一條切線. (Ⅰ)求a的值;
(Ⅱ)對任意的x1∈[1, ],都存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn , 若a2 , a5 , a11成等比數(shù)列,且a11=2(Sm﹣Sn)(m>n>0,m,n∈N*),則m+n的值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中, ,其面積為 ,則tan2Asin2B的最大值是

查看答案和解析>>

同步練習(xí)冊答案