已知函數(shù)f(x)是在(0,+∞)上每一點(diǎn)處可導(dǎo)的函數(shù),若xf′(x)-f(x)>0在x>0上恒成立,且f(x)=xax(a>0,a≠1,x>0),-=,若數(shù)列{}(n∈N)的前n項(xiàng)和為Sn,則Sn=( )
A.
B.1
C.-2
D.-
【答案】分析:通過-=,求出a 的值,利用xf′(x)-f(x)>0在x>0上恒成立,判斷a的值,然后求出數(shù)列的通項(xiàng)公式,求
出Sn,然后求出極限即可.
解答:解:f(x)=xax(a>0,a≠1,x>0),-=,所以7a-3a2=2,解得a=2或a=,
因?yàn)楹瘮?shù)f(x)是在(0,+∞)上每一點(diǎn)處可導(dǎo)的函數(shù),若xf′(x)-f(x)>0在x>0上恒成立,
所以即)ax是增函數(shù),所以a=2,數(shù)列{}就是{},
所以Sn=,因?yàn)楣葹椋?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/20131101225150214114643/SYS201311012251502141146011_DA/11.png">
==1.
故選B.
點(diǎn)評:本題是中檔題,考查函數(shù)的導(dǎo)數(shù)及其應(yīng)用,注意分式的導(dǎo)函數(shù)的應(yīng)用是本題的關(guān)鍵,注意無窮等比數(shù)列公比小于1的數(shù)列求和的極限的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是在(0,+∞)上每一點(diǎn)均可導(dǎo)的函數(shù),若xf/(x)>f(x)在x>0時恒成立.
(1)求證:函數(shù)g(x)=
f(x)x
在(0,+∞)上是增函數(shù);
(2)求證:當(dāng)x1>0,x2>0時,有f(x1+x2)>f(x1)+f(x2);
(3)請將(2)問推廣到一般情況,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是在(0,+∞)上每一點(diǎn)處可導(dǎo)的函數(shù),若xf′(x)>f(x)在(0,+∞)上恒成立.
(Ⅰ)求證:函數(shù)g(x)=
f(x)
x
在(0,+∞)上單調(diào)遞增;
(Ⅱ)當(dāng)x1>0,x2>0時,證明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)已知不等式ln(1+x)<x在x>-1且x≠0時恒成立,證明:
1
22
ln22+
1
32
ln32+
1
42
ln42+…+
1
(n+1)2
ln(n+1)2
n
2(n+1)(n+2)
(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是在(0,+∞)上每一點(diǎn)處均可導(dǎo)的函數(shù),若xf′(x)>f(x)在(0,+∞)上恒成立.
(Ⅰ)①求證:函數(shù)g(x)=
f(x)
x
在(0,+∞)上是增函數(shù);
②當(dāng)x1>0,x2>0時,證明:f(x1)+f(x2)<f(x1+x2);
(Ⅱ)已知不等式ln(x+1)<x在x>-1且x≠0時恒成立,求證:
1
22
ln22+
1
32
ln32+
1
42
ln42+
+
1
(n+1)2
ln(n+1)2
n
2(n+1)(n+2)
,(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是在(0,+∞)上每一點(diǎn)處可導(dǎo)的函數(shù),若xf′(x)-f(x)>0在x>0上恒成立,且f(x)=xax(a>0,a≠1,x>0),
7f(1)
3
-
f(2)
2
=
2
3
,若數(shù)列{
n
f(n)
}(n∈N)的前n項(xiàng)和為Sn,則
lim
n→∞
Sn=( 。
A、
1
2
B、1
C、-2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年遼寧省名校高三數(shù)學(xué)單元測試:算法、復(fù)數(shù)、推理與證明(解析版) 題型:解答題

已知函數(shù)f(x)是在(0,+∞)上每一點(diǎn)均可導(dǎo)的函數(shù),若xf/(x)>f(x)在x>0時恒成立.
(1)求證:函數(shù)在(0,+∞)上是增函數(shù);
(2)求證:當(dāng)x1>0,x2>0時,有f(x1+x2)>f(x1)+f(x2);
(3)請將(2)問推廣到一般情況,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案