設(shè)函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱,若當(dāng)x≤1時,y=x2+1,則當(dāng)x>1時,y=________.
x2-4x+5 解析1:用數(shù)形結(jié)合的方法,先作出x≤1時,y=x2+1的圖象,如圖實線部分.關(guān)于x=1與之對稱的部分仍是一條拋物線,即圖中虛線部分,其頂點為(2,1).所以當(dāng)x>1時,函數(shù)的表達式為y=(x-2)2+1=x2-4x+5. 解析2:若函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱,則有f(1+x)=f(1-x),于是f(x)=f(2-x).當(dāng)x>1時,2-x<1,將其代入y=x2+1中,得y=(2-x)2+1=x2-4x+5.所以當(dāng)x>1時,函數(shù)表達式為y=x2-4x+5. |
科目:高中數(shù)學(xué) 來源:江蘇省丹陽高級中學(xué)2007年高三數(shù)學(xué)月考試卷及答案 題型:013
設(shè)函數(shù)y=f(x)的定義如下表,數(shù)列{xn}滿足x0=5,對任意自然數(shù)n均有xn+1=f(xn),則x2007的值為
A.1
B.2
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:南京市2007屆高三第二次調(diào)研測試卷數(shù)學(xué) 題型:044
設(shè)函數(shù)y=f(x)的圖象是曲線C1,曲線C2與C1關(guān)于直線y=x對稱.將曲線C2向右平移1個單位得到曲線C3,已知曲線C3是函數(shù)y=log2x的圖象.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)an=nf(x)(n∈N),求數(shù)列{an}的前n項和Sn,并求最小的正實數(shù)t,使Sn<tan對任意n∈N都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省樂山一中2011屆高三第一次摸底考試文科數(shù)學(xué)試題 題型:013
設(shè)函數(shù)y=f(x)的反函數(shù)是y=f-1(x),且y=f(2x-1)的圖像過點(,1),則y=f-1(x)的圖像必過
(,1)
(1,)
(1,0)
(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆湖南省長沙市第一中學(xué)高三上學(xué)期第五次月考理科數(shù)學(xué)卷 題型:解答題
(本小題滿分13分)
設(shè)函數(shù)y=f(x)的定義域為(0,+∞),且在(0,+∞)上單調(diào)遞增,若對任意x,y∈(0,+∞)都有:f(xy)=f(x)+f(y)成立,數(shù)列{an}滿足:a1=f(1)+1,f(-)+f(+)=0.設(shè)Sn=aa+aa+aa+…+aa+aa.
(1)求數(shù)列{an}的通項公式,并求Sn關(guān)于n的表達式;
(2)設(shè)函數(shù)g(x)對任意x、y都有:g(x+y)=g(x)+g(y)+2xy,若g(1)=1,正項數(shù)列{bn}滿足:b=g(),Tn為數(shù)列{bn}的前n項和,試比較4Sn與Tn的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)y=f(x)的定義域為(0,+∞),且在(0,+∞)上單調(diào)遞增,若對任意x,y∈(0,+∞)都有:f(xy)=f(x)+f(y)成立,數(shù)列{an}滿足:a1=f(1)+1,
f(-)+f(+)=0.設(shè)Sn=aa+aa+aa+…+aa+aa.
(1)求數(shù)列{an}的通項公式,并求Sn關(guān)于n的表達式;
(2)設(shè)函數(shù)g(x)對任意x、y都有:g(x+y)=g(x)+g(y)+2xy,若g(1)=1,正項數(shù)列{bn}滿足:b=g(),Tn為數(shù)列{bn}的前n項和,試比較4Sn與Tn的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com