在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)M(1,-3)、N(5,1),若點(diǎn)C滿足=?t+(1-t)(t∈R),點(diǎn)C的軌跡與拋物線y2=4x交于A、B兩點(diǎn).

(1)求證:;

(2)在x軸上是否存在一點(diǎn)P(m,0),使得過(guò)點(diǎn)P任作拋物線的一條弦,并以該弦為直徑的圓都過(guò)原點(diǎn).若存在,請(qǐng)求出m的值及圓心的軌跡方程;若不存在,請(qǐng)說(shuō)明理由.

(1)證明:由=t+(1-t)(t∈R)知點(diǎn)C的軌跡是M、N兩點(diǎn)所在的直線,故點(diǎn)C的軌跡方程是:y+3=·(x-1),即y=x-4.

(x-4)2=4xx2-12x+16=0.

∴x1x2=16,x1+x2=12,

∴y1y2=(x1-4)(x2-4)=x1x2-4(x1+x2)+16=-16.

∴x1x2+y1y2=0.故.

(2)解析:存在點(diǎn)P(4,0),使得過(guò)點(diǎn)P任作拋物線的一條弦,以該弦為直徑的圓都過(guò)原點(diǎn).

由題意知:弦所在的直線的斜率不為零,

故設(shè)弦所在的直線方程為:x=ky+4,代入y2=x,得y2-4ky-16=0,

∴y1+y2=4k,y1y2=-16.

kOA·kOB==-1.

∴OA⊥OB,故以AB為直徑的圓都過(guò)原點(diǎn).

設(shè)弦AB的中點(diǎn)為M(x,y),

則x=(x1+x2),y=(y1+y2).

x1+x2=ky1+4+ky2+4=k(y1+y2)+8=k·(4k)+8=4k2+8.

∴弦AB的中點(diǎn)M的軌跡方程為:消去k,得y2=2x-8.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫出所有正確命題的編號(hào)).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過(guò)任何整點(diǎn)
②如果k與b都是無(wú)理數(shù),則直線y=kx+b不經(jīng)過(guò)任何整點(diǎn)
③直線l經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過(guò)兩個(gè)不同的整點(diǎn)
④直線y=kx+b經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過(guò)一個(gè)整點(diǎn)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線的焦點(diǎn),則r=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案