類比平面內正三角形的“三邊相等,三內角相等”的性質,可推知正四面體的一些性質:?“各棱長相等,同一頂點上的兩條棱的夾角相等;?各個面都是全等的正三角形,相鄰兩個面所成的二面角相等;?各個面都是全等的正三角形,同一頂點上的任何兩條棱的夾角相等。你認為比較恰當的是
①②③
解析試題分析:本題考查的知識點是類比推理,在由平面幾何的性質類比推理空間立體幾何性質時,我們常用的思路是:由平面幾何中點的性質,類比推理空間幾何中線的性質;由平面幾何中線的性質,類比推理空間幾何中面的性質;由平面幾何中面的性質,類比推理空間幾何中體的性質;或是將一個二維平面關系,類比推理為一個三維的立體關系,故類比平面內正三角形的“三邊相等,三內角相等”的性質,我們可以推斷正四面體的相關性質解:在由平面幾何的性質類比推理空間立體幾何性質時,我們常用的思路是:由平面幾何中點的性質,類比推理空間幾何中線的性質;由平面幾何中線的性質,類比推理空間幾何中面的性質;由平面幾何中面的性質,類比推理空間幾何中體的性質;或是將一個二維平面關系,類比推理為一個三維的立體關系,故類比平面內正三角形的“三邊相等,三內角相等”的性質,推斷:①各棱長相等,同一頂點上的任兩條棱的夾角都相等;②各個面都是全等的正三角形,相鄰兩個面所成的二面角都相等;③各個面都是全等的正三角形,同一頂點上的任兩條棱的夾角都相等.都是恰當的故答案為:①②③
考點:類比推理
點評:類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質去推測另一類事物的性質,得出一個明確的命題(猜想).的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質去推測另一類事物的性質,得出一個明確的命題(猜想).
科目:高中數學 來源: 題型:填空題
從1=1,1-4="-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4)," ,推廣到第個等式為_______________.
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
對大于或等于2的自然數m的3次方冪有如下分解方式:,,,……
則(1)的分解中最小的數是 (2分);
(2)按以上規(guī)律,第個式子可以表示為 (3分).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com