【題目】已知函數(shù)f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若x,y∈[﹣1,1],x+y≠0有(x+y)[f(x)+f(y)]>0.
(1)判斷f(x)的單調(diào)性,并加以證明;
(2)解不等式 ;
(3)若f(x)≤m2﹣2am+1對所有x∈[﹣1,1],a∈[﹣1,1]恒成立.求實數(shù)m的取值范圍.

【答案】
(1)解:函數(shù)f(x)在[﹣1,1]上單調(diào)增,證明如下

由題意,設(shè)x1,x2∈[﹣1,1],且x1<x2

則x1﹣x2<0

∵x,y∈[﹣1,1],x+y≠0有(x+y)[f(x)+f(y)]>0.

令x=x1,y=﹣x2,

∴f(x1)+f(﹣x2)<0

∵函數(shù)f(x)是定義在[﹣1,1]上的奇函數(shù)

∴f(x1)﹣f(x2)<0

∴函數(shù)f(x)在[﹣1,1]上單調(diào)增


(2)解:由(1)知, ,解得:
(3)解:由于函數(shù)f(x)在[﹣1,1]上單調(diào)增,

∴函數(shù)f(x)在[﹣1,1]上的最大值為f(1)=1

∴f(x)≤m2﹣2am+1對所有x∈[﹣1,1],a∈[﹣1,1]恒成立可轉(zhuǎn)化為:0≤m2﹣2am對所有a∈[﹣1,1]恒成立

,

解得m≥2或m≤﹣2或m=0


【解析】(1)設(shè)x1 , x2∈[﹣1,1],且x1<x2 , 則x1﹣x2<0,利用x,y∈[﹣1,1],x+y≠0有(x+y)[f(x)+f(y)]>0,可得f(x1)+f(﹣x2)<0,根據(jù)函數(shù)f(x)是定義在[﹣1,1]上的奇函數(shù),即可得函數(shù)f(x)在[﹣1,1]上單調(diào)增;(2)由(1)知, ,解之即可;(3)先確定函數(shù)f(x)在[﹣1,1]上的最大值為f(1)=1,將f(x)≤m2﹣2am+1對所有x∈[﹣1,1],a∈[﹣1,1]恒成立轉(zhuǎn)化為:0≤m2﹣2am對所有a∈[﹣1,1]恒成立,從而可求實數(shù)m的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市居民用水?dāng)M實行階梯水價,每人月用水量中不超過w立方米的部分按4元/立方米收費,超出w立方米的部分按10元/立方米收費,從該市隨機(jī)調(diào)查了10000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如圖頻率分布直方圖:
(1)如果w為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價格為4元/立方米,w至少定為多少?
(2)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,當(dāng)w=3時,估計該市居民該月的人均水費.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在任意三角形ABC內(nèi)任取一點Q,使SABQ SABC的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校在一次趣味運動會的頒獎儀式上,高一、高二、高三各代表隊人數(shù)分別為120人、120人、n人.為了活躍氣氛,大會組委會在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取20人在前排就坐,其中高二代表隊有6人.
(1)求n的值;
(2)把在前排就坐的高二代表隊6人分別記為a,b,c,d,e,f,現(xiàn)隨機(jī)從中抽取2人上臺抽獎.求a和b至少有一人上臺抽獎的概率.
(3)抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該代表中獎;若電腦顯示“謝謝”,則不中獎,求該代表中獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= cosx(sinx+cosx). (Ⅰ)若0<α< ,且sinα= ,求f(α)的值;
(Ⅱ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD平面ABCD,點M在線段PB上,PD//平面MAC,PA=PD=,AB=4

I)求證:MPB的中點;

II)求二面角B-PD-A的大;

III)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差d>0的等差數(shù)列{an}中,a1=10,且a1 , 2a2+2,5a3成等比數(shù)列.
(1)求公差d及通項an
(2)設(shè)Sn= + +…+ ,求證:Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD中,底面ABCD是棱長為2的菱形,PA⊥平面ABCD,∠ABC=60°,E是BC中點,若H為PD上的動點,EH與平面PAD所成最大角的正切值為
(1)當(dāng)EH與平面PAD所成角的正切值為 時,求證:EH∥平面PAB;
(2)在(1)的條件下,求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次歌手大獎賽上,七位評委為歌手打出的分?jǐn)?shù)如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均值和方差分別為(
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016

查看答案和解析>>

同步練習(xí)冊答案