如圖,在棱長為2的正方體ABCD-A1B1C1D1中,E為BC的中點,點P在線段D1E上,點P到直線CC1的距離的最小值為   
【答案】分析:如圖所示,取B1C1的中點F,連接EF,ED1,利用線面平行的性質(zhì)即可得到C1C∥平面D1EF,進而得到異面直線D1E與C1C的距離.
解答:解:如圖所示,取B1C1的中點F,連接EF,ED1,
,CC1⊥底面ABCD,∴四邊形EFC1C是矩形.
∴CC1∥EF,
又EF?平面D1EF,CC1?平面D1EF,∴CC1∥平面D1EF.
∴直線C1C上任一點到平面D1EF的距離是兩條異面直線D1E與CC1的距離.
過點C1作C1M⊥D1F,
∵平面D1EF⊥平面A1B1C1D1
∴C1M⊥平面D1EF.
過點M作MP∥EF交D1E于點P,則MP∥C1C.
取C1N=MP,連接PN,則四邊形MPNC1是矩形.
可得NP⊥平面D1EF,
在Rt△D1C1F中,C1M•D1F=D1C1•C1F,得=
∴點P到直線CC1的距離的最小值為
故答案為
點評:熟練掌握通過線面平行的性質(zhì)即可得到異面直線的距離是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為2的正四面體A-BCD中,若以△ABC為視角正面,則其正視圖的面積是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省寧波市慈溪市高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

如圖,在棱長為2的正四面體A-BCD中,若以△ABC為視角正面,則其正視圖的面積是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為2的正四面體ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點,則四邊形EFGH的面積為        

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為2的正四面體ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點,則四邊形EFGH的面積為        

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長為2的正四面體ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點,則四邊形EFGH的面積為        

 

查看答案和解析>>

同步練習(xí)冊答案