15.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象如圖所示,為得到g(x)=Asin(ωx+$\frac{π}{6}$)的圖象,可以將f(x)的圖象( 。
A.向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度B.向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度
C.向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度D.向右平移$\frac{π}{12}$個(gè)單位長(zhǎng)度

分析 由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)f(x)的解析式;再根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:根據(jù)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象,
可得A=1,$\frac{1}{4}•T$=$\frac{1}{4}•\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$,∴ω=2.
再根據(jù)五點(diǎn)法作圖可得2•$\frac{π}{3}$+φ=π,∴φ=$\frac{π}{3}$,故函數(shù)的解析式為f(x)=sin(2x+$\frac{π}{3}$).
故g(x)=Asin(ωx+$\frac{π}{6}$)=sin(2x+$\frac{π}{6}$),故把f(x)的圖象向右平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,
可得g(x)=sin(2x+$\frac{π}{6}$) 的圖象,
故選:D.

點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,還考查了函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)y=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期為$\frac{2π}{3}$,則該函數(shù)的單調(diào)增區(qū)間為( 。
A.[$\frac{2kπ}{3}$-$\frac{7π}{18}$,$\frac{2kπ}{3}$+$\frac{π}{6}$](k∈Z)B.[$\frac{2kπ}{3}$-$\frac{5π}{18}$,$\frac{2kπ}{3}$+$\frac{π}{18}$](k∈Z)
C.[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z)D.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某幾何體的三視圖如圖所示,則其體積為(  )
A.$\frac{3π}{4}$B.$\frac{π+2}{4}$C.$\frac{π+1}{2}$D.$\frac{3π+2}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.α,β,γ是三個(gè)平面,m,n是兩條直線,下列命題正確的是( 。
A.若α∩β=m,n?α,m⊥n,則α⊥β
B.若α⊥β,α∩β=m,α∩γ=n,則m⊥n
C.若m⊥α,n⊥β,m∥n,則α∥β
D.若m不垂直平面,則m不可能垂直于平面α內(nèi)的無(wú)數(shù)條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.(1-x)(2+x)5的展開(kāi)式中x3的系數(shù)為(  )
A.-40B.40C.-15D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若復(fù)數(shù)(1-i)(a+i)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)a的取值范圍為(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:噸)對(duì)價(jià)格y(單位:千元/噸)和利潤(rùn)z的影響,對(duì)近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如表:
 x 1 2 3 4
 y 7.06.5  5.5 3.8 2.2
(1)求y關(guān)于x的線性回歸方程;
(2)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測(cè)當(dāng)年產(chǎn)量為多少時(shí),年利潤(rùn)z取到最大值?(結(jié)果保留兩位小數(shù))
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$
參考數(shù)據(jù):$\sum_{i=1}^{5}{x}_{i}{y}_{i}=62.7$,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=55.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)y=Asin(ωx+φ)$({A>0,|φ|<\frac{π}{2}})$部分圖象如圖,則函數(shù)解析式為$y=2sin(\frac{1}{3}x-\frac{π}{6})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求下列函數(shù)的導(dǎo)數(shù).
(])y=$\frac{{x}^{3}-1}{{x}^{2}+1}$;
(2)y=x2+sin$\frac{x}{2}$cos$\frac{x}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案