已知函數(shù)f(x)=數(shù)學(xué)公式,則函數(shù)g(x)=f(x)-x在區(qū)間(0,10)內(nèi)所有零點的和為________.

45
分析:函數(shù)y=f(x)與y=x在(0,1],(1,2],(2,3],(3,4],…,(n,n+1]上的交點依次為(0,0),(1,1),(2,2),(3,3),(4,4),…,(n+1,n+1).
即方程f(x)-x=0在(2,3],(3,4],…,(n,n+1]上的根依次為3,4,…n+1.方程f(x)-x=0的根按從小到大的順序排列所得數(shù)列為0,1,2,3,4,…,可得數(shù)列通項公式.
解答:解:當(dāng)0<x≤1時,有-1<x-1<0,則f(x)=f(x-1)+1=2x-1,
當(dāng)1<x≤2時,有0<x-1≤1,則f(x)=f(x-1)+1=2x-2+1,
當(dāng)2<x≤3時,有1<x-1≤2,則f(x)=f(x-1)+1=2x-3+2,
當(dāng)3<x≤4時,有2<x-1≤3,則f(x)=f(x-1)+1=2x-4+3,
以此類推,當(dāng)n<x≤n+1(其中n∈N)時,則f(x)=f(x-1)+1=2x-n-1+n,
所以,函數(shù)f(x)=2x的圖象與直線y=x+1的交點為:(0,1)和(1,2),
由于指數(shù)函數(shù)f(x)=2x為增函數(shù)且圖象下凸,故它們只有這兩個交點.
然后:
①將函數(shù)f(x)=2x和y=x+1的圖象同時向下平移一個單位,即得到函數(shù)f(x)=2x-1和y=x的圖象,
取x≤0的部分,可見它們有且僅有一個交點(0,0).
即當(dāng)x≤0時,方程f(x)-x=0有且僅有一個根x=0.
②、僦泻瘮(shù)f(x)=2x-1和y=x圖象-1<x≤0的部分,再同時向上和向右各平移一個單位,
即得f(x)=2x-1和y=x在0<x≤1上的圖象,此時它們?nèi)匀恢挥幸粋交點(1,1).
即當(dāng)0<x≤1時,方程f(x)-x=0有且僅有一個根x=1.
③取②中函數(shù)f(x)=2x-1和y=x在0<x≤1上的圖象,繼續(xù)按照上述步驟進(jìn)行,
即得到f(x)=2x-2+1和y=x在1<x≤2上的圖象,此時它們?nèi)匀恢挥幸粋交點(2,2).
即當(dāng)1<x≤2時,方程f(x)-x=0有且僅有一個根x=2.
④以此類推,函數(shù)y=f(x)與y=x在(2,3],(3,4],…,(n,n+1]上的交點依次為(3,3),(4,4),…(n+1,n+1).
即方程f(x)-x=0在(2,3],(3,4],…(n,n+1]上的根依次為3,4,…,n+1.
綜上所述方程f(x)-x=0的根按從小到大的順序排列所得數(shù)列為:0,1,2,3,4,…,
故函數(shù)g(x)=f(x)-x在區(qū)間(0,10)內(nèi)所有零點的和為 1+2+3+…+9=45,
故答案為 45.
點評:本題考查了數(shù)列遞推公式的靈活運用,解題時要注意分類討論思想和歸納總結(jié);本題屬于較難的題目,要細(xì)心解答,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案