分析 根據(jù)條件判斷f′(x)與f(x)的關(guān)系,構(gòu)造函數(shù)求出函數(shù)的最值,進(jìn)行比較即可.
解答 解:∵f(1)=e,g(x)=f′(x)-f(x),g(1)=0,
∴g(1)=f′(1)-f(1)=0,則f′(1)=f(1)=e,
g′(x)>0恒成立,
即g(x)為增函數(shù),
則當(dāng)x>1時(shí),g(x)>g(1)=0,
即f′(x)-f(x)>0,
當(dāng)x<1時(shí),g(x)<g(1)=0,
即f′(x)-f(x)<0,
構(gòu)造函數(shù)m(x)=$\frac{f(x)}{{e}^{x}}$,
則m′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$,
則當(dāng)x>1時(shí),m′(x)>0,此時(shí)遞增,
當(dāng)x<1時(shí),m′(x)<0,此時(shí)遞減,
即函數(shù)m(x)取得極小值同時(shí)也是最小值m(1)=$\frac{f(1)}{e}$=1
即m(x)=$\frac{f(x)}{{e}^{x}}$≥1,
則f(x)≥ex,
則h(x)=f(x)-ex≥ex-ex=0,
即h(x)的最小值為0.
故答案為:0
點(diǎn)評(píng) 本題主要考查函數(shù)最值的應(yīng)用,根據(jù)導(dǎo)數(shù)之間的關(guān)系,利用構(gòu)造法是解決本題的關(guān)鍵.綜合性較強(qiáng),難度較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<α<1 | B. | α<1 | C. | α>0 | D. | α<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(0)+f(2)<2f(1) | B. | f(0)+f(2)≤2f(1) | C. | f(0)+f(2)≥2f(1) | D. | f(0)+f(2)>2f(1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com