11.已知函數(shù)f(x)的定義域是R,f′(x)是f(x)的導(dǎo)數(shù),f(1)=e,g(x)=f′(x)-f(x),g(1)=0,g(x)的導(dǎo)數(shù)恒大于零,函數(shù)h(x)=f(x)-ex(e=2.71828…)是自然對數(shù)的底數(shù))的最小值是0.

分析 根據(jù)條件判斷f′(x)與f(x)的關(guān)系,構(gòu)造函數(shù)求出函數(shù)的最值,進(jìn)行比較即可.

解答 解:∵f(1)=e,g(x)=f′(x)-f(x),g(1)=0,
∴g(1)=f′(1)-f(1)=0,則f′(1)=f(1)=e,
g′(x)>0恒成立,
即g(x)為增函數(shù),
則當(dāng)x>1時,g(x)>g(1)=0,
即f′(x)-f(x)>0,
當(dāng)x<1時,g(x)<g(1)=0,
即f′(x)-f(x)<0,
構(gòu)造函數(shù)m(x)=$\frac{f(x)}{{e}^{x}}$,
則m′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$,
則當(dāng)x>1時,m′(x)>0,此時遞增,
當(dāng)x<1時,m′(x)<0,此時遞減,
即函數(shù)m(x)取得極小值同時也是最小值m(1)=$\frac{f(1)}{e}$=1
即m(x)=$\frac{f(x)}{{e}^{x}}$≥1,
則f(x)≥ex
則h(x)=f(x)-ex≥ex-ex=0,
即h(x)的最小值為0.
故答案為:0

點(diǎn)評 本題主要考查函數(shù)最值的應(yīng)用,根據(jù)導(dǎo)數(shù)之間的關(guān)系,利用構(gòu)造法是解決本題的關(guān)鍵.綜合性較強(qiáng),難度較大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=xα,當(dāng)x∈(1,+∞)時,f(x)-x<0,則(  )
A.0<α<1B.α<1C.α>0D.α<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在三棱錐P-ABC中,△PBC和△PAC是邊長為$\sqrt{2}$的等邊三角形,AB=2,D是AB中點(diǎn).
(1)在棱PA上求一點(diǎn)M,使得DM∥面PBC;
(2)求證:面PAB⊥面ABC;
(3)求二面角P-BC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知棱長為a的正方體ABCD-A1B1C1D1中,E是BC的中點(diǎn),F(xiàn)為A1B1的中點(diǎn).
(1)求證:DE⊥C1F;
(2)求異面直線A1C與C1F所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.給定橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),稱圓x2+y2=a2+b2為橢圓E的“伴隨圓”.
已知橢圓E中b=1,離心率為$\frac{\sqrt{6}}{3}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若直線l與橢圓E交于A,B兩點(diǎn),與其“伴隨圓”交于C,D兩點(diǎn),當(dāng)|CD|=$\sqrt{13}$時,求弦長|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.對于R上可導(dǎo)的任意函數(shù)f(x),若滿足f(x)=f(2-x),且(x-1)f′(x)≥0,則必有(  )
A.f(0)+f(2)<2f(1)B.f(0)+f(2)≤2f(1)C.f(0)+f(2)≥2f(1)D.f(0)+f(2)>2f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F(xiàn)為CE上的一點(diǎn),且BF⊥平面ACE,AC與BD交于點(diǎn)G.
(1)求證:AE⊥平面BCE;
(2)求證:AE∥平面BFD;
(3)求三棱錐C-BFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.關(guān)于函數(shù)f(x)=$\sqrt{3}$cos(2x+$\frac{π}{6}$),x∈R,下列結(jié)論中正確的個數(shù)是( 。
①若f(x1)=f(x2),則x1-x2必是π的整數(shù)倍;
②函數(shù)f(x)的圖象關(guān)于直線x=$\frac{5π}{12}$對稱;
③函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的值域為[-$\frac{3}{2},\frac{3}{2}$];
④函數(shù)f(x)的解析式可寫為f(x)=$\sqrt{3}sin(2x+\frac{2π}{3})$.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=xex-5.
(1)試求函數(shù)f(x)的單調(diào)區(qū)間及最值
(2)設(shè)函數(shù)g(x)=|f(x-3)+5|,若方程[g(x)]2+tg(x)+1=0(t∈R)有四個實(shí)數(shù)根,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案