設(shè)函數(shù)f(x)=x2-2mx+m2+1(m∈R+),g(x)=x+(k∈R+).

(1)當(dāng)x∈(0,∞)時,f(x)和g(x)都滿足:存在實數(shù)a,使f(x)≥f(a),g(x)≥g(a)且f(a)=g(a)-m.求f(x)和g(x)的表達(dá)式;

(2)(文科不做、理科做)對于(1)中的f(x),設(shè)實數(shù)b滿足|x-b|<1.

求證:|f(x)-f(b)|<2|b|+5.

答案:
解析:

  解:(1)∵當(dāng)x∈R+時,g(x)=x+ = + + ≥3× =3 ,當(dāng)且僅當(dāng) = 時,等號成立,

  解:(1)∵當(dāng)xR+時,g(x)x3×3,當(dāng)且僅當(dāng)時,等號成立,

  即,x時,g(x)min3,

  當(dāng)xR+時,f(x)(xm)21,∴f(x)minf(m)1

  ∵當(dāng)xR+時有,f(x)f(a)g(x)g(a),∴f(a)g(a)分別是f(x)g(x)(0,+∞)上的最小值.

  ∴  解得,m2,k4

  ∴f(x)x24x5g(x)x

  (2)|f(x)f(b)||x24xb24b||(xb)(xb)4)|

 。|xb|·|xb4|

  ∵|xb|1,  ∴|f(x)f(b)||xb4|

  =|(xb)2b4|

  ≤|xb||2b|4

 。1|2b|42|b|5


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044

設(shè)函數(shù)f(x)=x+,x∈[0,+∞)

(1)當(dāng)a=2時,求f(x)的最小值.

(2)當(dāng)0<a<1時,判斷f(x)的單調(diào)性,并寫出f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004全國各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044

設(shè)函數(shù)f(x)=ax2+bx+1(a、b∈R)

(1)若f(-1)=0,則對任意實數(shù)均有f(x)≥0成立,求f(x)的表達(dá)式.

(2)(文)在(1)的條件下,當(dāng)x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍.

(理)在(1)的條件下,當(dāng)x∈[-2,2]時,g(x)=xf(x)-kx是單調(diào)遞增,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044

設(shè)函數(shù)f(x)=x2+ax+lg|a+1|(a≠-1,a∈R)

(1)求證:f(x)能表示成一個奇函數(shù)g(x)和一個偶函數(shù)h(x)之和,并求出g(x)和h(x)的表達(dá)式.

(2)若f(x)和g(x)在區(qū)間[|a+1|,a2]上均為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:成功之路·突破重點線·數(shù)學(xué)(學(xué)生用書) 題型:044

設(shè)函數(shù)f(x)=ax2+bx+1(a、b∈R)

(1)若f(-1)=0,則對任意實數(shù)均有f(x)≥0成立,求f(x)的表達(dá)式.

(2)在(1)條件下,當(dāng)x∈[-2,2],g(x)=xf(x)-kx單調(diào)遞增,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案