【題目】函數(shù) (為實(shí)數(shù)).
(1)若,求證:函數(shù)在上是增函數(shù);
(2)求函數(shù)在上的最小值及相應(yīng)的的值;
(3)若存在,使得成立,求實(shí)數(shù)的取值范圍.
【答案】(1)函數(shù)在上是增函數(shù);(2)見(jiàn)解析;(3).
【解析】試題分析:(1)當(dāng)時(shí), 在(0,+∞)上恒成立,故函數(shù)在(1,+∞)上是增函數(shù);
(2)求導(dǎo)) ,當(dāng)x∈[1,e]時(shí), .分①,②,③,三種情況得到函數(shù)f(x)在[1,e]上是單調(diào)性,進(jìn)而得到[f(x)]min;
(3)由題意可化簡(jiǎn)得到,令,利用導(dǎo)數(shù)判斷其單調(diào)性求出最小值為.
試題解析:
(1)當(dāng)時(shí), ,其定義域?yàn)?/span>,
,
當(dāng)時(shí), 恒成立,
故函數(shù)在上是增函數(shù).
(2) ,
當(dāng)時(shí), ,
①若, 在上有 (僅當(dāng), 時(shí), ),
故函數(shù)在上是增函數(shù),此時(shí);
②若,由,得,
當(dāng)時(shí),有,此時(shí)在區(qū)間上是減函數(shù);
當(dāng)時(shí),有,此時(shí), 在區(qū)間上是增函數(shù),
故;
③若, 在上有 (僅當(dāng), 時(shí), ),
故函數(shù)在上是減函數(shù),此時(shí)
綜上可知,當(dāng)時(shí), 的最小值為1,相應(yīng)的的值為1;
當(dāng)時(shí), 的最小值為,相應(yīng)的值為;
當(dāng)時(shí), 的最小值為,相應(yīng)的的值為.
(3)不等式可化為,
因?yàn)?/span>,所以,且等號(hào)不能同時(shí)取,
所以,即,
所以,
令,
則,
當(dāng)時(shí), , ,
從而 (僅當(dāng)時(shí)取等號(hào)),
所以在上為增函數(shù),所以的最小值為,
所以實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌手機(jī)銷(xiāo)售商今年1,2,3月份的銷(xiāo)售量分別是1萬(wàn)部,1.2萬(wàn)部,1.3萬(wàn)部,為估計(jì)以后每個(gè)月的銷(xiāo)售量,以這三個(gè)月的銷(xiāo)售為依據(jù),用一個(gè)函數(shù)模擬該品牌手機(jī)的銷(xiāo)售量y(單位:萬(wàn)部)與月份x之間的關(guān)系,現(xiàn)從二次函數(shù) 或函數(shù) 中選用一個(gè)效果好的函數(shù)行模擬,如果4月份的銷(xiāo)售量為1.37萬(wàn)件,則5月份的銷(xiāo)售量為__________萬(wàn)件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某校新、老校區(qū)之間開(kāi)車(chē)單程所需時(shí)間為, 只與道路暢通狀況有關(guān),對(duì)其容量為的樣本進(jìn)行統(tǒng)計(jì),結(jié)果如圖:
(分鐘) | 25 | 30 | 35 | 40 |
頻數(shù)(次) | 20 | 30 | 40 | 10 |
(1)求的分布列與數(shù)學(xué)期望;
(2)劉教授駕車(chē)從老校區(qū)出發(fā),前往新校區(qū)做一個(gè)50分鐘的講座,結(jié)束后立即返回老校區(qū),求劉教授從離開(kāi)老校區(qū)到返回老校區(qū)共用時(shí)間不超過(guò)120分鐘的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中, 底面,且, , , 、分別是、的中點(diǎn).
(1)求證:平面平面;
(2)求二面角的平面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與橢圓相交于兩點(diǎn),與軸, 軸分別相交于點(diǎn)和點(diǎn),且,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn), 的延長(zhǎng)線交橢圓于點(diǎn),過(guò)點(diǎn)分別做軸的垂線,垂足分別為.
(1) 若橢圓的左、右焦點(diǎn)與其短軸的一個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)在橢圓上,求橢圓的方程;
(2)當(dāng)時(shí),若點(diǎn)平分線段,求橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,我海監(jiān)船在島海域例行維權(quán)巡航,某時(shí)刻航行至處,此時(shí)測(cè)得其東北方向與它相距海里的處有一外國(guó)船只,且島位于海監(jiān)船正東海里處.
(1)求此時(shí)該外國(guó)船只與島的距離;
(2)觀測(cè)中發(fā)現(xiàn),此外國(guó)船只正以每小時(shí)海里的速度沿正南方向航行,為了將該船攔截在離島海里處,不讓其進(jìn)入島海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng),時(shí),證明:(其中為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題是的必要而不充分條件;
設(shè)命題實(shí)數(shù)滿(mǎn)足方程表示雙曲線.
(1)若“”為真命題,求實(shí)數(shù)的取值范圍;
(2)若“”為假命題,“”為真命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com