已知A(2,0,0),B(0,1,0),C(0,0,2),則P(2,1,4)到平面ABC的距離是
 
分析:利用已知條件求出
AB
,
AC
,
AP
,利用向量垂直求出平面ABC的法向量,通過(guò)向量數(shù)量積求出P(2,1,4)到平面ABC的距離.
解答:解:
AB
=(-2,1,0)
,
AC
=(-2,0,2)
,
AP
=(0,1,4)

設(shè)平面ABC的法向量為
n
=(x,y,z)
,
則由
n
AB
=0,
n
AC
=0

得:
-2x+y=0
-2x+2z=0
,解得x=z,y=2x
令z=1,則
n
=(1,2,1)

所以點(diǎn)P到平面平面ABC的距離是d=
n
AP
|
n|
=
0+2+4
6
=
6

故答案為:
6
點(diǎn)評(píng):本題考查空間向量的數(shù)量積的運(yùn)算,平面法向量的求法,點(diǎn)到平面的距離的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

空間直角坐標(biāo)系中,已知A(1,0,2),B(1,-3,1),點(diǎn)P在z軸上,且|PA|=|PB|,則點(diǎn)P的坐標(biāo)為
(0,0,-3)
(0,0,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省蘇州市張家港外國(guó)語(yǔ)學(xué)校高二(上)周日數(shù)學(xué)試卷10(理科)(解析版) 題型:解答題

已知A(-2,0),B(2,0),點(diǎn)C、D依次滿(mǎn)足
(1)求點(diǎn)D的軌跡;
(2)過(guò)點(diǎn)A作直線(xiàn)l交以A、B為焦點(diǎn)的橢圓于M、N兩點(diǎn),線(xiàn)段MN的中點(diǎn)到y(tǒng)軸的距離為,且直線(xiàn)l與點(diǎn)D的軌跡相切,求該橢圓的方程;
(3)在(2)的條件下,設(shè)點(diǎn)Q的坐標(biāo)為(1,0),是否存在橢圓上的點(diǎn)P及以Q為圓心的一個(gè)圓,使得該圓與直線(xiàn)PA,PB都相切,如存在,求出P點(diǎn)坐標(biāo)及圓的方程,如不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年江蘇省蘇錫常鎮(zhèn)四市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(選修4-2:矩陣與變換)
已知A(0,0),B(2,0),C(2,2)在矩陣對(duì)應(yīng)變換的作用下,得到的對(duì)應(yīng)點(diǎn)分別為A'(0,0),,C'(0,2),求矩陣M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆黑龍江虎林高中高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=alnx-x2+1.

(1)若曲線(xiàn)y=f(x)在x=1處的切線(xiàn)方程為4x-y+b=0,求實(shí)數(shù)a和b的值;

(2)若a<0,且對(duì)任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問(wèn)中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線(xiàn)y=f(x)在x=1處的切線(xiàn)方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問(wèn)中,利用當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,

即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識(shí)來(lái)解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線(xiàn)y=f(x)在x=1處的切線(xiàn)方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時(shí)恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

同步練習(xí)冊(cè)答案