在直三棱柱中,,,求:

(1)異面直線所成角的大;
(2)直線到平面的距離.

(1);(2)

解析試題分析:(1)求異面直線所成的角,就是根據(jù)定義作出這個角,當然異面直線的平移,一般是過其中一條上的一點作另一條的平行線,特別是在基本幾何體中,要充分利用幾何體中的平行關系尋找平行線,然后在三角形中求解,本題中,就是我們要求的角(或其補角);(2)直線到平面的距離等于直線上的任一點(如)到平面的距離,而點到平面的距離可以看作是三棱錐底面上的高,這樣可以用體積法求出這個距離,下面關鍵就是看三棱錐的體積能否很快求出,事實上本題中三棱錐的體積是三棱柱體積的,因此高(距離)易求.
試題解析:(1)因為,所以(或其補角)是異面直線所成角.      1分
因為,,所以平面,所以.        3分
中,,所以      5分
所以異面直線所成角的大小為.                6分
(2)因為//平面
所以到平面的距離等于到平面的距離             8分
到平面的距離為,
因為,所以            10分
可得                    11分
直線與平面的距離為.            12分
考點:(1)異面直線所成的角;(2)直線到平面的距離.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形ABCD為正方形,在四邊形ADPQ中,PD∥QA.又QA⊥平面ABCD,QA=AB=PD.

(1)證明:PQ⊥平面DCQ;
(2)CP上是否存在一點R,使QR∥平面ABCD,若存在,請求出R的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在底面為平行四邊形的四棱錐中,平面,且,點的中點.

(1)求證:
(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,正方形ABCD和三角形ACE所在的平面互相垂直,EFBDABEF.

(1)求證:BF∥平面ACE;
(2)求證:BFBD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面為矩形,底面,分別是、中點.

(1)求證:平面
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,平面平面是等腰直角三角形,,四邊形是直角梯形,∥AE,,,分別為的中點.

(1)求異面直線所成角的大。
(2)求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在正方體中,分別的中點.

(1)求證:
(2)已知是靠近的四等分點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四棱錐,,,,,,,上一點,是平面的交點.

(1)求證:;
(2)求證:;
(3)求與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面是矩形,四條側(cè)棱長均相等且于點.

(Ⅰ)求證:;
(Ⅱ)求證:.

查看答案和解析>>

同步練習冊答案