【題目】已知F2、F1是雙曲線 (a>0,b>0)的上、下焦點,點F2關(guān)于漸近線的對稱點恰好落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線的離心率為( )
A.3
B.
C.2
D.
【答案】C
【解析】解:由題意,F(xiàn)1(0,﹣c),F(xiàn)2(0,c),
一條漸近線方程為y= x,則F2到漸近線的距離為 =b.
設(shè)F2關(guān)于漸近線的對稱點為M,F(xiàn)2M與漸近線交于A,
∴|MF2|=2b,A為F2M的中點,
又0是F1F2的中點,∴OA∥F1M,∴∠F1MF2為直角,
∴△MF1F2為直角三角形,
∴由勾股定理得4c2=c2+4b2
∴3c2=4(c2﹣a2),∴c2=4a2 ,
∴c=2a,∴e=2.
故選C.
首先求出F2到漸近線的距離,利用F2關(guān)于漸近線的對稱點恰落在以F1為圓心,|OF1|為半徑的圓上,可得直角三角形MF1F2 , 運用勾股定理,即可求出雙曲線的離心率.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()
(1)若在區(qū)間[0,1]上有最大值1和最小值-2.求a,b的值;
(2)在(1)條件下,若在區(qū)間上,不等式f(x) 恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,△ABC的角平分線AD的延長線交它的外接圓于點E.
(1)證明:△ABE∽△ADC;
(2)若△ABC的面積S= ADAE,求∠BAC的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),將的圖象向右平移兩個單位長度,得到函數(shù)的圖象.
(1)求函數(shù)的解析式;
(2)若方程在上有且僅有一個實根,求的取值范圍;
(3)若函數(shù)與的圖象關(guān)于直線對稱,設(shè),已知對任意的恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年3月山東省高考改革實施方案發(fā)布:2020年夏季高考開始全省高考考生總成績將由語文、數(shù)學、外語三門統(tǒng)一高考成績和學生自主選擇的普通高中學業(yè)水平等級性考試科目的成績共同構(gòu)成.省教育廳為了解正就讀高中的學生家長對高考改革方案所持的贊成態(tài)度,隨機從中抽取了100名城鄉(xiāng)家長作為樣本進行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見.右面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.
(Ⅰ)請根據(jù)已知條件與等高條形圖完成下面的列聯(lián)表:
贊成 | 不贊成 | 合計 | |
城鎮(zhèn)居民 | |||
農(nóng)村居民 | |||
合計 |
(Ⅱ)試判斷我們是否有95%的把握認為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?.
【附】,其中.
0.150 | 0.100 | 0.050 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司試銷一種成本單價為500元/件的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元/件.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量(件)與銷售單價(元/件)可近似看作一次函數(shù)的關(guān)系(如圖所示).
(1)由圖象,求函數(shù)的表達式;
(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價﹣成本總價)為元.試用銷售單價表示毛利潤,并求銷售單價定為多少時,該公司獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.
(1)求證:AB1⊥平面A1BD;
(2)求銳二面角A-A1D-B的余弦值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com