科目:高中數學 來源: 題型:
f(x2)-f(x1) |
x2-x1 |
f(b)-f(a) |
b-a |
b-a |
b |
b |
a |
b-a |
a |
查看答案和解析>>
科目:高中數學 來源: 題型:
1 | x |
查看答案和解析>>
科目:高中數學 來源: 題型:
π |
2 |
π |
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
已知函數f(x)=mx3+nx2(m、n∈R ,m≠0)的圖像在(2,f(2))處的切線與x軸平行.
(1)求n,m的關系式并求f(x)的單調減區(qū)間;
(2)證明:對任意實數0<x1<x2<1, 關于x的方程:
在(x1,x2)恒有實數解
(3)結合(2)的結論,其實我們有拉格朗日中值定理:若函數f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數,且在區(qū)間(a,b)內導數都存在,則在(a,b)內至少存在一點x0,使得.如我們所學過的指、對數函數,正、余弦函數等都符合拉格朗日中值定理條件.試用拉格朗日中值定理證明:
當0<a<b時,(可不用證明函數的連續(xù)性和可導性)
查看答案和解析>>
科目:高中數學 來源:2010年福建省龍巖市高考數學二模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com