如圖,正三棱柱ABC—A1B1C1的各棱長都相等,M、E分別是和AB1的中點(diǎn),點(diǎn)F在BC上且滿足BF∶FC=1∶3.
(1)求證:BB1∥平面EFM;
(2)求四面體的體積.
(1)見解析;(2).
【解析】
試題分析:(1)要證線面平行,一般是在平面內(nèi)找(證)一條直線與待證直線平行,然后由線面平行的判定定理可得結(jié)論,本題中平行線很容易找到,因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030303281682819351/SYS201403030328523750622577_DA.files/image002.png">都是相應(yīng)線段上的中點(diǎn),因此顯然有∥.(2)三棱錐的體積公式是,由于三梭錐的四個面都是三角形,故我們可以恰當(dāng)?shù)剡x取底面,以使得高易求(即熟知的換底法),本題中三梭錐,我們就可以以為底,而這時高就是,而高的垂直的證明可由正三梭錐的定義證得.
試題解析:(1)證明:連結(jié)EM、MF,∵M(jìn)、E分別是正三棱柱的棱AB和AB1的中點(diǎn),
∴BB1∥ME, 3分
又BB1平面EFM,∴BB1∥平面EFM. 6分
(2)正三棱柱中,由(1),所以, 8分
根據(jù)條件得出,所以,10分
又,因此. 12分
考點(diǎn):(1)線面平行;(2)棱錐的體積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A、2 | ||
B、
| ||
C、
| ||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
AO | OB1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com