如果復(fù)數(shù)Z滿足|Z+i|+|Z-i|=2,那么|Z+i+1|最小值是( )
A.1
B.
C.2
D.
【答案】分析:直接利用復(fù)數(shù)模的幾何意義求出z的軌跡.然后利用點(diǎn)到直線的距離公式求解即可.
解答:解:∵|Z+i|+|Z-i|=2
∴點(diǎn)Z到點(diǎn)A(0,-1)與到點(diǎn)B(0,1)的距離之和為2.
∴點(diǎn)Z的軌跡為線段AB.
而|Z+i+1|表示為點(diǎn)Z到點(diǎn)(-1,-1)的距離.
數(shù)形結(jié)合,得最小距離為1
故選A.
點(diǎn)評(píng):本題只要弄清楚復(fù)數(shù)模的幾何意義,就能夠得到解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果復(fù)數(shù)z滿足|z+i|+|z-i|=4,則|z+2|的最大值為( 。
A、2
2
B、2
5
C、2+
3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果復(fù)數(shù)z滿足|z-i|=2,那么|z+1|的最大值是
2+
2
2+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列三個(gè)命題:
①若z1,z2∈C且z1-z2>0,則z1>z2
②如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面上所對(duì)應(yīng)點(diǎn)的軌跡為橢圓.
③已知曲線C:
x2
-
y2
=1
和兩定點(diǎn)F1(-
2
,0)
,F(xiàn)2(
2
,0)
,若P(x,y)是C上的動(dòng)點(diǎn),則||PF1|-|PF2||是定值.
上述命題中正確的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•閔行區(qū)二模)給出下列四個(gè)命題:
①如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面的對(duì)應(yīng)點(diǎn)的軌跡是橢圓.
②若對(duì)任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,則數(shù)列{an}是等差數(shù)列或等比數(shù)列.
③設(shè)f(x)是定義在R上的函數(shù),且對(duì)任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
④已知曲線C:
x2
9
-
y2
16
=1
和兩定點(diǎn)E(-5,0)、F(5,0),若P(x,y)是C上的動(dòng)點(diǎn),則||PE|-|PF||<6.
上述命題中錯(cuò)誤的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面上所對(duì)應(yīng)點(diǎn)的軌跡是橢圓.
②設(shè)f(x)是定義在R上的函數(shù),且對(duì)任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
③已知曲線C:
x2
9
-
y2
16
=1
和兩定點(diǎn)E(-5,0)、F(5,0),若P(x,y)是C上的動(dòng)點(diǎn),則||PE|-|PF||<6.
④設(shè)定義在R上的兩個(gè)函數(shù)f(x)、g(x)都有最小值,且對(duì)任意的x∈R,命題“f(x)>0或g(x)>0”正確,則f(x)的最小值為正數(shù)或g(x)的最小值為正數(shù).
上述命題中錯(cuò)誤的個(gè)數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案