精英家教網 > 高中數學 > 題目詳情
已知f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…
x101
101
,g(x)=1-x+
x2
2
-
x3
3
+
x4
4
-…-
x101
101
,若函數f(x)有唯一零點x1,函數g(x)有唯一零點x2,則有( 。
分析:先判斷函數零點所在的區(qū)間,然后證明其單調性即可.
解答:解:①∵f(0)=1>0,f(-1)=1-1-
1
2
-
1
3
-…-
1
101
<0,∴函數f(x)在區(qū)間(-1,0)內有零點;
又f(x)=1-x+x2-x3+…+x100,
當x∈(-1,0)時,f(x)=
1+x101
1+x
>0,∴函數f(x)在區(qū)間(-1,0)上單調遞增,故函數f(x)有唯一零點x1∈(-1,0);
②∵g(1)=1-1+
1
2
-
1
3
+…+
1
100
-
1
101
>0,g(2)=1-2+
22
2
-
23
3
+…+
2100
100
-
2101
101
<0.
當x∈(1,2)時,f(x)=-1+x-x2+x3-…+x99-x100=
x100-1
x+1
>0,∴函數g(x)在區(qū)間(1,2)上單調遞增,故函數g(x)有唯一零點x2∈(1,2);
綜上可知:正確答案為B.
故選B.
點評:理解函數零點的判斷方法和正確使用導數研究函數的單調性是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

21、例4.已知f(x)=ax2+bx+c,g(x)=ax+b(a、b、c∈R),當x∈[-1,1]時,|f(x)|≤1
(1)證明:|c|≤1.
(2)x∈[-1,1]時,證明|g(x)|≤2.
(3)設a>0,當-1≤x≤1時,g(x)max=2,求f(x).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
f1(x),f1(x)≤f2(x)
f2(x),f1(x)>f2(x)

(1)當a=1時,求f(x)的解析式;
(2)在(1)的條件下,若方程f(x)-m=0有4個不等的實根,求實數m的范圍;
(3)當2≤a<9時,設f(x)=f2(x)所對應的自變量取值區(qū)間的長度為l(閉區(qū)間[m,n]的長度定義為n-m),試求l的最大值.

查看答案和解析>>

科目:高中數學 來源:2011年高三數學第一輪基礎知識訓練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數f(x)在區(qū)間(-∞,0)上的單調性;
(Ⅲ)若,設g(x)是函數f(x)在區(qū)間[0,+∞)上的導函數,問是否存在實數a,滿足a>1并且使g(x)在區(qū)間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011年高三數學復習(第2章 函數):2.8 一次函數、二次函數(解析版) 題型:解答題

例4.已知f(x)=ax2+bx+c,g(x)=ax+b(a、b、c∈R),當x∈[-1,1]時,|f(x)|≤1
(1)證明:|c|≤1.
(2)x∈[-1,1]時,證明|g(x)|≤2.
(3)設a>0,當-1≤x≤1時,g(x)max=2,求f(x).

查看答案和解析>>

科目:高中數學 來源:2013年遼寧省大連八中高考適應性考試數學試卷(理科)(解析版) 題型:選擇題

已知f(x)是定義在R上的奇函數,且f(1)=0,f′(x)是f(x)的導函數,當x>0時總有xf′(x)<f(x)成立,則不等式f(x)>0的解集為( )
A.{x|x<-1或x>1}
B.{x|x<-1或0<x<1}
C.{x|-1<x<0或0<x<1}
D.{x|-1<x<1,且x≠0}

查看答案和解析>>

同步練習冊答案