20.回文數(shù)是從左到右與從右到左讀都一樣的正整數(shù),如2,11,242,6776,83238等,設(shè)n位回文數(shù)的個數(shù)為an(n為正整數(shù)),如11是2位回文數(shù),下列說法正確的是( 。
A.a4=100B.a2n+1=10a2n(n∈N+
C.a2n=10a2n-1(n∈N+D.以上說法都不正確

分析 由回文數(shù)的特點,故歸納猜想2n+2位回文數(shù)與2n+1位回文數(shù)個數(shù)相等,均為9×10n個,逐一判斷即可.

解答 解:由題意,1位回文數(shù)有9個,
2位回文數(shù)有9個,
3位回文數(shù)有90=9×10個,
4位回文數(shù)有1001,1111,1221,…,1991,2002,…,9999,共90個,
故歸納猜想2n+2位回文數(shù)與2n+1位回文數(shù)個數(shù)相等,均為9×10n個,
即a2n+2=a2n+1=9×10n個,
所以a2n=9×10n-1個,
所以a2n+1=10a2n(n∈N+
所以a2n=a2n-1(n∈N+),
故選:B.

點評 本題主要考查了分步計數(shù)原理的運用,新定義數(shù)字問題的理解和運用,歸納推理的運用,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.從數(shù)字0,1,2,3,4組成的五位自然數(shù)a1a2a3a4a5中任取一個數(shù),則該數(shù)滿足a1>a2>a3,a3<a4<a5的“凹數(shù)”(如31024.54134等)的概率是(  )
A.$\frac{23}{1250}$B.$\frac{23}{625}$C.$\frac{23}{2500}$D.$\frac{9}{500}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知曲線C1、C2的極坐標方程分別為ρ=2sinθ,$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)=-1,則曲線C1上的點與曲線C2上的點的最短距離為$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,直三棱柱ABC-A1B1C1中,AC=BC=AA1=3,AC⊥BC,點M在線段AB上.
(1)若M是AB中點,證明AC1∥平面B1CM;
(2)當BM=$\sqrt{2}$時,求直線C1A1與平面B1MC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,已知$\sqrt{3}$BC•cosC=AB•sinA.
(1)求∠C的大;
(2)若AB=$\sqrt{7}$,且△ABC的面積為$\frac{3\sqrt{3}}{4}$,求AC+BC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)x,y滿足不等式組$\left\{\begin{array}{l}{x+y-6≤0}\\{2x-y-1≤0}\\{3x-y-2≥0}\end{array}\right.$,若z=ax+y的最大值為2a+4,最小值為a+1,則實數(shù)a的取值范圍為[-2,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.等差數(shù)列{an}的前n項和為Sn,已知S3=a1+4a2,a5=7,則a1=(  )
A.1B.-1C.$\frac{1}{9}$D.-$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某產(chǎn)品的廣告費用x與銷售額y的不完整統(tǒng)計數(shù)據(jù)如表:
廣告費用x(萬元)345
銷售額y(萬元)2228m
若已知回歸直線方程為$\widehat{y}$=9x-6,則表中m的值為(  )
A.40B.39C.38D.37

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,正方形ACDE所在的平面與平面ABC垂直,M是CE和AD的交點,AC⊥BC,且AC=BC.
(1)求證:AM⊥平面EBC;
(2)求直線AB與平面EBC所成的角的大;
(3)求二面角A-EB-C的大小.
(4)你認為求二面角常用的方法有哪些?請按應(yīng)用的重要程度寫出3種,并就其中一種方法談?wù)勊膽?yīng)用條件.

查看答案和解析>>

同步練習(xí)冊答案