精英家教網 > 高中數學 > 題目詳情
14.在數列{an}中,a${\;}_{2}=\frac{3}{2},{a}_{3}=\frac{7}{3}$,且數列{nan+1}是等差數列,則an=$\frac{4n-5}{n}$.

分析 利用等差數列的通項公式即可得出

解答 解:∵數列{nan+1}是等差數列,
∴nan+1=2a2+1+(n-2)[(3a3+1)-(2a2+1)]
=3+1+(n-2)(8-4)
=4n-4,
∴an=$\frac{4n-5}{n}$.
故答案為:$\frac{4n-5}{n}$.

點評 本題考查了等差數列的通項公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

13.如圖甲是某條公共汽車線路收支差額y與乘客量x的圖象(收支差額=車票收入-支出費用),由于目前本條線路虧損,公司有關人員提出了兩條建議:建議

(Ⅰ)是不改變車票價格,減少支出費用;建議
(Ⅱ)是不改變支出費用,提高車票價格.下面給出四個圖象:在這些圖象中,(1)反映了建議(Ⅰ),(3)反映了建議(Ⅱ)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.命題“?x>0,(x+1)ex>1”的否定是假命題(填真命題/假命題).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.若定義在R上的函數f(x)當且僅當存在有限個非零自變量x,使得f(-x)=f(x),則稱f(x)為類偶函數.那么下列函數中,為類偶函數的是( 。
A.f(x)=4cosxB.f(x)=x2-2x+3C.f(x)=2x+1D.f(x)=x3-3x

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.如圖,四邊形ABCD中,∠BAD=135°,∠ADC=120°,∠BCD=45°,∠ABC=60°,BC=$\sqrt{3}$,則線段AC長度的取值范圍是( 。
A.$[{\sqrt{2},\sqrt{3}})$B.$[{\frac{3}{2},\sqrt{3}})$C.$({\sqrt{2},\sqrt{3}})$D.$({\frac{3}{2},\sqrt{3}})$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.若雙曲線的一條漸近線方程為y=$\sqrt{2}$x,則其離心率為$\frac{{\sqrt{6}}}{2}$或$\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.定義兩種運算:a⊕b=$\sqrt{{a}^{2}-^{2}}$,a?b=$\sqrt{(a-b)^{2}}$,則f(x)=$\frac{2⊕x}{2-(x?2)}$是( 。
A.奇函數B.偶函數C.既奇又偶函數D.非奇非偶函數

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.①求函數的導數:y=$\frac{x}{(2x+1)^{3}}$
②計算定積分:${∫}_{-1}^{8}$$\root{3}{x}$dx=

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.對于函數$f(x)=\left\{\begin{array}{l}1-\left|x+1\right|,x∈[-2,0]\\ 2f(x-2),x∈(0,+∞)\end{array}\right.$,有如下三個命題:
①f(x)的單調遞減區(qū)間為[2n-3,2n-2](n∈N*
②f(x)的值域為[0,+∞)
③若-2<a≤0,則方程f(x)=x+a在區(qū)間[-2,0]內有3個不相等的實根
其中,真命題是①②.(將真命題的序號填寫在橫線上)

查看答案和解析>>

同步練習冊答案