【題目】如圖,在斜三梭柱ABC﹣A1B1C1中,側(cè)面AA1C1C是菱形,AC1與A1C交于點(diǎn)O,E是棱AB上一點(diǎn),且OE∥平面BCC1B1
(1)求證:E是AB中點(diǎn);
(2)若AC1⊥A1B,求證:AC1⊥BC.

【答案】
(1)證明:連結(jié)BC1,取AB中點(diǎn)E′,

∵側(cè)面AA1C1C是菱形,AC1與A1C交于點(diǎn)O,

∴O為AC1的中點(diǎn),

∵E′是AB的中點(diǎn),

∴OE′∥BC1;

∵OE′平面BCC1B1,BC1平面BCC1B1,

∴OE′∥平面BCC1B1,

∵OE∥平面BCC1B1,

∴E,E′重合,

∴E是AB中點(diǎn)


(2)證明:∵側(cè)面AA1C1C是菱形,

∴AC1⊥A1C,

∵AC1⊥A1B,A1C∩A1B=A1,A1C平面A1BC,A1B平面A1BC,

∴AC1⊥平面A1BC,

∵BC平面A1BC,

∴AC1⊥BC


【解析】(1)利用同一法,首先通過連接對(duì)角線得到中點(diǎn),進(jìn)一步利用中位線,得到線線平行,進(jìn)一步利用線面平行的判定定理,得到結(jié)論.(2)利用菱形的對(duì)角線互相垂直,進(jìn)一步利用線面垂直的判定定理,得到線面垂直,最后轉(zhuǎn)化成線線垂直.
【考點(diǎn)精析】關(guān)于本題考查的空間中直線與直線之間的位置關(guān)系和直線與平面平行的性質(zhì),需要了解相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn);一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行;簡(jiǎn)記為:線面平行則線線平行才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某三棱錐的正視圖、側(cè)視圖和俯視圖分別是直角三角形、等腰三角形和等邊三角形,若該三棱錐的頂點(diǎn)都在同一球面上,則該球的表面積為(
A.27π
B.48π
C.64π
D.81π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了豎一塊廣告牌,要制造三角形支架,如圖,要求∠ACB=60°,BC的長(zhǎng)度大于1米,且AC比AB長(zhǎng)0.5米,為了穩(wěn)固廣告牌,要求AC越短越好,則AC最短為(
A.(1+ )米
B.2米
C.(1+ )米
D.(2+ )米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△AnBnCn的三邊長(zhǎng)分別為an , bn , cn , n=1,2,3…,若b1>c1 , b1+c1=2a1 , an+1=an , bn+1= ,cn+1= ,則∠An的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|≥m對(duì)一切實(shí)數(shù)x均成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二階矩陣M有特征值λ=8及對(duì)應(yīng)的一個(gè)特征向量 =[ ],并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(﹣1,2)變換成(﹣2,4).
(1)求矩陣M;
(2)求矩陣M的另一個(gè)特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如表提供了某廠節(jié)能降耗改造后在生產(chǎn)A產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾組對(duì)應(yīng)數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程為 =0.7x+0.35,則下列結(jié)論錯(cuò)誤的是(

x

3

4

5

6

y

2.5

t

4

4.5


A.線性回歸直線一定過點(diǎn)(4.5,3.5)
B.產(chǎn)品的生產(chǎn)能耗與產(chǎn)量呈正相關(guān)
C.t的取值必定是3.15
D.A產(chǎn)品每多生產(chǎn)1噸,則相應(yīng)的生產(chǎn)能耗約增加0.7噸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某重點(diǎn)中學(xué)為了解高一年級(jí)學(xué)生身體發(fā)育情況,對(duì)全校700名高一年級(jí)學(xué)生按性別進(jìn)行分層抽樣檢查,測(cè)得身高(單位:cm)頻數(shù)分布表如表1、表2. 表1:男生身高頻數(shù)分布表

身高(cm)

[160,165)

[165,170)

[170,175)

[175,180)

[180,185)

[185,190)

頻數(shù)

2

5

14

13

4

2

表2:女生身高頻數(shù)分布表

身高(cm)

[150,155)

[155,160)

[160,165)

[165,170)

[170,175)

[175,180)

頻數(shù)

1

7

12

6

3

1


(1)求該校高一女生的人數(shù);
(2)估計(jì)該校學(xué)生身高在[165,180)的概率;
(3)以樣本頻率為概率,現(xiàn)從高一年級(jí)的男生和女生中分別選出1人,設(shè)X表示身高在[165,180)學(xué)生的人數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的程序框圖的算法思路來源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸入a,b的值分別是21,28,則輸出a的值為(
A.14
B.7
C.1
D.0

查看答案和解析>>

同步練習(xí)冊(cè)答案