(本小題滿分14分)
在正三棱柱中,點是的中點,.
(1)求證:∥平面;
(2)試在棱上找一點,使.
(1)詳見解析(2)為的中點.
【解析】
試題分析:(1)證明線面平行,一般利用線面平行判定定理進行證明,即先從線線平行出發(fā),這可利用三角形中位線性質進行證明:連接,交于點,則、分別是、的中點,所以∥.從而可證∥平面.(2)找一點目的是證線線垂直,故從垂直角度找:利用正方形性質,邊的中點與對邊頂點連線存在垂直關系,故取為的中點.再根據(jù)線面垂直判定及性質定理進行論證.
試題解析:(1)證明:連接,交于點, 連接.
∵、分別是、的中點,
∴∥. 3分
∵平面,平面,
∴∥平面. 6分
(2)為的中點. 7分
證明如下:
∵在正三棱柱中,,∴四邊形是正方形.
∵為的中點,是的中點,∴, 9分
∴,.
又∵,
,∴. 11分
∵是正三角形,是的中點,
∴.
∵平面平面, 平面平面,平面,
∴平面.
∵平面,
∴. 13分
∵,
∴平面.
∵平面,
∴. 14分
考點:線面平行判定定理,線面垂直判定及性質定理
科目:高中數(shù)學 來源:2014-2015學年河南省信陽市畢業(yè)班第二次調研檢測文科數(shù)學試卷(解析版) 題型:選擇題
設集合,,若,則的取值范圍是( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學 來源:2014-2015學年江西省南昌市高三上學期第四次月考理科數(shù)學試卷(解析版) 題型:選擇題
過點,且在軸上的截距是在軸上的截距的倍的直線方程是( )
A. B.或
C. D.或
查看答案和解析>>
科目:高中數(shù)學 來源:2014-2015學年江蘇省宿遷市高三下學期期初開學聯(lián)考文科數(shù)學試卷(解析版) 題型:填空題
如圖,正三棱錐P-ABC的所有棱長都為4.點D,E,F(xiàn)分別在棱PA,PB,PC上,滿足PD=PF=1,PE=2,則三棱錐P – DEF的體積是 .
查看答案和解析>>
科目:高中數(shù)學 來源:2014-2015學年江蘇省宿遷市高三下學期期初開學聯(lián)考理科數(shù)學試卷(解析版) 題型:填空題
如圖,點分別是橢圓的上頂點和右焦點,直線與橢圓交于另一點,過中心作直線的平行線交橢圓于兩點,若則橢圓的離心率為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2014-2015學年江蘇省宿遷市高三下學期期初開學聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題
已知等比數(shù)列中,各項都是正數(shù),且成等差數(shù)列,則等于 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com