已知數(shù)列{an}的前n項(xiàng)和Sn=n2+1(n∈N*),則它的通項(xiàng)公式是
 
分析:先求出sn-1,由an=sn-sn-1得到數(shù)列的通項(xiàng)公式即可.
解答:解:由題意知:當(dāng)n=1時(shí),a1=s1=2,
當(dāng)n≥2時(shí),Sn=n2+1①
sn-1=(n-1)2+1②,所以利用①-②得:an=sn-sn-1=2n-1.
故答案為:an=
2,,n=1
2n-1,n≥2
點(diǎn)評(píng):考查學(xué)生利用做差法求數(shù)列通項(xiàng)公式的能力.做題時(shí)要注意討論n的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于(  )
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案