判斷此命題,若c>0,則y=x2+x-c的圖象與x軸有兩個交點”的逆否命題的真假.

答案:
解析:

  解析:∵c>0,

  ∴△=1+4c>0

  ∴y=x2+x-c的圖象與x軸有兩個交點,即命題為真

  ∴其逆否命題也為真


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若給定橢圓C:ax2+by2=1(a>0,b>0,a≠b)和點N(x0,y0),則稱直線l:ax0x+by0y=1為橢圓C的“伴隨直線”.
(1)若N(x0,y0)在橢圓C上,判斷橢圓C與它的“伴隨直線”的位置關系(當直線與橢圓的交點個數(shù)為0個、1個、2個時,分別稱直線與橢圓相離、相切、相交),并說明理由;
(2)命題:“若點N(x0,y0)在橢圓C的外部,則直線l與橢圓C必相交.”寫出這個命題的逆命題,判斷此逆命題的真假,說明理由;
(3)若N(x0,y0)在橢圓C的內(nèi)部,過N點任意作一條直線,交橢圓C于A、B,交l于M點(異于A、B),設
MA
=λ1
AN
MB
=λ2
BN
,問λ12是否為定值?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若給定橢圓C:ax2+by2=1(a>0,b>0,ab)和點N(x0,y0),則稱直線l:ax0x+by0y=1為橢圓C的“伴隨直線”,

   (1)若N(x0,y0)在橢圓C上,判斷橢圓C與它的“伴隨直線”的位置關系(當直線與橢圓的交點個數(shù)為0個、1個、2個時,分別稱直線與橢圓相離、相切、相交),并說明理由;

   (2)命題:“若點N(x0,y0)在橢圓C的外部,則直線l與橢圓C必相交.”寫出這個命題的逆命題,判斷此逆命題的真假,說明理由;

   (3)若N(x0,y0)在橢圓C的內(nèi)部,過N點任意作一條直線,交橢圓C于A、B,交l于M點(異于A、B),設,,問是否為定值?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2008年上海市上海中學高三3月綜合練習數(shù)學試卷1(文理合卷)(解析版) 題型:解答題

若給定橢圓C:ax2+by2=1(a>0,b>0,a≠b)和點N(x,y),則稱直線l:axx+byy=1為橢圓C的“伴隨直線”.
(1)若N(x,y)在橢圓C上,判斷橢圓C與它的“伴隨直線”的位置關系(當直線與橢圓的交點個數(shù)為0個、1個、2個時,分別稱直線與橢圓相離、相切、相交),并說明理由;
(2)命題:“若點N(x,y)在橢圓C的外部,則直線l與橢圓C必相交.”寫出這個命題的逆命題,判斷此逆命題的真假,說明理由;
(3)若N(x,y)在橢圓C的內(nèi)部,過N點任意作一條直線,交橢圓C于A、B,交l于M點(異于A、B),設,,問λ12是否為定值?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年上海市上海中學高三數(shù)學綜合練習試卷(1)(解析版) 題型:解答題

若給定橢圓C:ax2+by2=1(a>0,b>0,a≠b)和點N(x,y),則稱直線l:axx+byy=1為橢圓C的“伴隨直線”.
(1)若N(x,y)在橢圓C上,判斷橢圓C與它的“伴隨直線”的位置關系(當直線與橢圓的交點個數(shù)為0個、1個、2個時,分別稱直線與橢圓相離、相切、相交),并說明理由;
(2)命題:“若點N(x,y)在橢圓C的外部,則直線l與橢圓C必相交.”寫出這個命題的逆命題,判斷此逆命題的真假,說明理由;
(3)若N(x,y)在橢圓C的內(nèi)部,過N點任意作一條直線,交橢圓C于A、B,交l于M點(異于A、B),設,,問λ12是否為定值?說明理由.

查看答案和解析>>

同步練習冊答案