(本題滿分12分)如圖,在直三棱柱中,底面為等邊三角形,且,、、分別是,的中點.
(1)求證:∥;
(2)求證:;
(3) 求直線與平面所成的角.
(1)根據(jù)線面平行的判定定理來得到。
(2)根據(jù)線面垂直,然后結合面面垂直的判定定理得到。
(3)
解析試題分析:解:(1)證明:因為分別是的中點,所以,
又,, 所以∥.
(2)證明:因為三棱柱為直三棱柱,所以,
又,
所以,
又為等邊三角形,是的中點,
又所以,
又,所以,.
(3)取為的中點,連結, .易知,又由(2)
,,又,
,交線為,則是在面內(nèi)的射影
即為直線與平面所成的角.
不妨設則,,
.
又,
,即直線與平面所成的角為.
考點:本試題考查了空間中的線面平行,以及面面垂直,和線面角的求解問題 。
點評:解決這類問題,要熟練的掌握平行和垂直的判定定理以及性質(zhì)定理是關鍵。同時要利用線面角的定義,作出線面角,轉(zhuǎn)化為平面圖形 ,求解空間角的思想。屬于中檔題。
科目:高中數(shù)學 來源: 題型:解答題
如圖1,,,過動點A作,垂足在線段上且異于點,連接,沿將△折起,使(如圖2所示).
(1)當的長為多少時,三棱錐的體積最大;
(2)當三棱錐的體積最大時,設點,分別為棱、的中點,試在棱上確定一點,使得,并求與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分10分)
如圖,在直三棱柱中,,.棱上有兩個動點E,F(xiàn),且EF =" a" (a為常數(shù)).
(Ⅰ)在平面ABC內(nèi)確定一條直線,使該直線與直線CE垂直;
(Ⅱ)判斷三棱錐B—CEF的體積是否為定值.若是定值,求出這個三棱錐的體積;若不是定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)如圖,在四棱錐中,底面為平行四邊形,,,為中點,平面, ,
為中點.
(1)證明://平面;
(2)證明:平面;
(3)求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
下列三個圖中,左邊是一個正方體截去一個角后所得多面體的直觀圖。右邊兩個是正視圖和側(cè)視圖.
(1)請在正視圖的下方,按照畫三視圖的要求畫出該多面體的俯視圖(不要求敘述作圖過程);
(2)求該多面體的體積(尺寸如圖).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)如圖,在底面為直角梯形的四棱錐中,平面,,,.
(Ⅰ)求證:;
(Ⅱ)求直線與平面所成的角;
(Ⅲ)設點在棱上, ,若∥平面,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)如圖,三棱柱的各棱長均為2,側(cè)面底面,側(cè)棱與底面所成的角為.
(1) 求直線與底面所成的角;
(2) 在線段上是否存在點,使得平面平面?若存在,求出的長;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知△BCD中,∠BCD=90°,AB⊥平面BCD,E、F分別是AC、AD上的動點,且
求證:不論λ為何值,總有平面BEF⊥平面ABC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com