已知函數(shù)f(x)定義域?yàn)閇0,1],且同時(shí)滿足:
、賹(duì)任意x∈[0,1],總有f(x)≥3.
、趂(1)=4
③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)-3
(Ⅰ)試求f(0)的值;
(Ⅱ)試求函數(shù)f(x)的最大值;
(Ⅲ)試證明:當(dāng)x∈時(shí),f(x)<3x+3;當(dāng)x∈(n∈N*)時(shí),f(x)<3x+3.(文科不做此問(wèn)后半部分)
(1)f(0+0)≥f(0)+f(0)-3,f(0)≤3,又f(0)≥3 ∴f(0)=3 (2)設(shè)0≤x1<x2≤1 f(x2)=f(x2-x1+x1)≥f(x2-x1)+f(x1)-3,f(x2-x1)≥3 ∴f(x2)≥f(x1)+3-3即f(x2)≥f(x1) ∴f(x)在[0,1]增函數(shù) ∴f(x)≤f(1)=4即f(x)的最大值為4. (3)∵f(x)在上是增函數(shù). ∴當(dāng)x∈時(shí),f(x)≤f(1)=4. 而在上,3x+3>3,+3=4 ∴f(x)<3x+3.x∈ 用數(shù)學(xué)歸納法證明:當(dāng)n∈N時(shí),x∈時(shí)f(x)<3x+3 、賜=0時(shí)已證. 、诩僭O(shè)n=k時(shí),當(dāng)x∈,f(x)<3x+3 則x∈時(shí),則3x∈,f(3x)<9x+3 又由已知f(3x)≥f(2x)+f(x)-3≥f(x)+f(x)-3+f(x)-3=3f(x)-6 即3f(x)-6<9x+3 ∴f(x)<3x+3即n=k+1時(shí),命題亦成立. ∴n∈N時(shí),命題成立,則n∈N*命題當(dāng)然成立. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
sinπx |
(x2+1)(x2-2x+2) |
A、1個(gè) | B、2個(gè) | C、3個(gè) | D、4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2007年南通市教研室高三數(shù)學(xué)考前預(yù)測(cè)題 題型:044
已知函數(shù)f(x)定義域?yàn)閇0,1],且同時(shí)滿足
(1)對(duì)于任意x∈[0,1],且同時(shí)滿足;
(2)f(1)=4;
(3)若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)-3.
(Ⅰ)試求f(0)的值;
(Ⅱ)試求函數(shù)f(x)的最大值;
(Ⅲ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,滿足a1=1,Sn=(an-3),n∈N*.
求證:f(a1)+f(a2)+…+f(an)<log3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省鎮(zhèn)平一高高三下學(xué)期第四次周考文科數(shù)學(xué)試卷 題型:解答題
.(本小題滿分10分)選修4-5:不等式選講
已知函數(shù)f(x)=|x-a|-2|x-1|(a∈R).
(Ⅰ)當(dāng)a=3時(shí),求函數(shù)f(x)最大值;
(Ⅱ)解關(guān)于x的不等式f(x)≥0.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com