設(shè)F1,F(xiàn)2是雙曲線x2=1的兩個焦點,P是雙曲線上的一點,且3PF1=4PF2,則△PF1F2的面積等于________.
24
由P是雙曲線上的一點和3PF1=4PF2可知,PF1-PF2=2,解得PF1=8,PF2=6.又F1F2=2c=10,所以△PF1F2為直角三角形,所以△PF1F2的面積S=×6×8=24.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

是否同時存在滿足下列條件的雙曲線,若存在,求出其方程,若不存在,說明理由.
(1)焦點在軸上的雙曲線漸近線方程為;
(2)點到雙曲線上動點的距離最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知梯形ABCD中|AB|=2|CD|,點E滿足=λ,雙曲線過C、D、E三點,且以A、B為焦點.當(dāng)≤λ≤時,求雙曲線離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知△ABC外接圓半徑R=,且∠ABC=120°,BC=10,邊BC在x軸上且y軸垂直平分BC邊,則過點A且以B、C為焦點的雙曲線方程為______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線過點(3,-2),且與橢圓4x2+9y2=36有相同的焦點.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)求以雙曲線的右準(zhǔn)線為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1、F2為雙曲線C:x2-y2=1的左、右焦點,點P在C上,∠F1PF2=60°,則|PF1|·|PF2|=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點A是拋物線C1:y2=2px(p>0)與雙曲線C2:-=1(a>0,b>0)的一條漸近線的交點,若點A到拋物線C1的準(zhǔn)線的距離為p,則雙曲線C2的離心率等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線-=1的離心率為    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若雙曲線的實軸長、虛軸長、焦距成等差數(shù)列,則雙曲線的離心率為__________.

查看答案和解析>>

同步練習(xí)冊答案