15.某醫(yī)療研究所為了檢驗某種血清預防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設H0:“這種血清不能起到預防感冒的作用”,利用2×2列聯(lián)表計算得K2≈3.918,經(jīng)查對臨界值表知P(K2≥3.841)≈0.05,對此,四名同學作出了以下的判斷:
p:有95%的把握認為“能起到預防感冒的作用”;
q:如果某人未使用該血清,那么他在一年中有95%的可能性得感冒:
r:這種血清預防感冒的有效率為95%;
s:這種血清預防感冒的有效率為5%.
則下列結論中,正確結論的序號是(1)(4).
(1)p∧¬q;(2)¬p∧q;(3)r∨s;(4)p∧¬r.

分析 利用獨立性檢驗原理、復合命題的判定方法即可判斷出結論.

解答 解:由題意,K2≈3.918,P(K2≥3.841)≈0.05,
所以只有第一位同學判斷正確.即有95%的把握認為“這種血清能起到預防感冒的作用”.
由真值表知(1),(4)為真命題.
故答案為:(1)(4).

點評 本題考查了獨立性檢驗原理、復合命題的判定方法,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.為調(diào)查了解某高等院校畢業(yè)生參加T作后,從事的T作與大學所學專業(yè)是否專業(yè)對口,該校隨機調(diào)查了80位該校2015年畢業(yè)的大學生,得到具體數(shù)據(jù)如表:
專業(yè)對口專業(yè)不對口合計
301040
35540
合計651580
(1)能否在犯錯誤的概率不超過5%的前提下,認為“畢業(yè)生從事的工作與大學所學專業(yè)對口與性別有關”?
參考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
P(K)0.500.400.250.150.100.050.0250.010
0.4550.7081.3232.0722.3063.8415.0216.635
(2)求這80位畢業(yè)生從事的工作與大學所學專業(yè)對口的頻率,并估計該校近3年畢業(yè)的2000名大學生中從事的工作與大學所學專業(yè)對口的人數(shù);
(3)若從工作與所學專業(yè)不對口的15人中選出男生甲、乙,女生丙、丁,讓他們兩兩進行一次10分鐘的職業(yè)交流,該校宣傳部對每次交流都一一進行視頻記錄,然后隨機選取一次交流視頻上傳到學校的網(wǎng)站,試求選取的視頻恰為異性交流視頻的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知在四面體ABCD中,AB,AC,AD兩兩互相垂直,給出下列兩個命題:
①$\overrightarrow{AB}$•$\overrightarrow{CD}$=$\overrightarrow{AC}$•$\overrightarrow{BD}$=$\overrightarrow{AD}$•$\overrightarrow{BC}$,
②($\overrightarrow{AB}$+$\overrightarrow{AD}$+$\overrightarrow{AC}$)2=$\overrightarrow{AB}$2+$\overrightarrow{AC}$2+$\overrightarrow{AD}$2
則下列關于以上兩個命題的真假性判斷正確的為(  )
A.①真、②真B.①真、②假C.①假、②假D.①假、②真

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.雙曲線2x2-y2=8的實軸長是( 。
A.2B.2$\sqrt{2}$C.4D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設M,N為兩個隨機事件,如果M,N為互斥事件($\overline{M}$,$\overline{N}$表示M,N的對立事件),那么( 。
A.$\overline{M}$∪$\overline{N}$是必然事件B.M∪N是必然事件
C.$\overline{M}$∩$\overline{N}$=∅D.$\overline{M}$與$\overline{N}$一定不為互斥事件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知非負實數(shù)a,b,c滿足ab+bc+ca=1,求證:$\frac{1}{a+b}$$+\frac{1}{b+c}$$+\frac{1}{c+a}$$≥\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.執(zhí)行如圖所示的程序框圖,若輸入p=5,q=6,則輸出a的值為30.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知α∈(0,$\frac{π}{2}$),β∈($\frac{π}{2}$,π)且$sin(α+β)=\frac{3}{5}$,$cosβ=-\frac{5}{13}$,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知點M的直角坐標為 ( $\sqrt{3}$,-1)則它的極坐標可以是( 。
A.( 2,$\frac{2π}{3}$  )B.( 2,$\frac{5π}{6}$ )C.(2,$\frac{5π}{3}$)D.( 2,$\frac{11π}{6}$ )

查看答案和解析>>

同步練習冊答案