【題目】在矩形ABCD中,AB=4 ,AD=2 ,將△ABD沿BD折起,使得點(diǎn)A折起至A′,設(shè)二面角A′﹣BD﹣C的大小為θ.

(1)當(dāng)θ=90°時(shí),求A′C的長(zhǎng);
(2)當(dāng)cosθ= 時(shí),求BC與平面A′BD所成角的正弦值.

【答案】
(1)解:在圖1中,過(guò)A作BD的垂線交BD于E,交DC于F,連接CE.

∵AB=4 ,AD=2 ,∴BD= =10.

,BE= =8,cos∠CBE= =

在△BCE中,由余弦定理得CE= =2

∵θ=90°,∴A′E⊥平面ABCD,∴A′E⊥CE.

∴|A′C|= =2


(2)DE= =2.

∵tan∠FDE= ,∴EF=1,DF= =

當(dāng) 即cos∠A′EF= 時(shí),

∴A′E2=A′F2+EF2,∴∠A'FE=90°

又BD⊥AE,BD⊥EF,∴BD⊥平面A'EF,∴BD⊥A'F

∴A'F⊥平面ABCD.

以F為原點(diǎn),以FC為x軸,以過(guò)F的AD的平行線為y軸,以FA′為z軸建立空間直角坐標(biāo)系如圖所示:

∴A′(0,0, ),D(﹣ ,0,0),B(3 ,2 ,0),C(3 ,0,0).

=(0,2 ,0), =(4 ,2 ,0), =( ,0, ).

設(shè)平面A′BD的法向量為 =(x,y,z),則 ,

,令z=1得 =(﹣ ,2 ,1).

∴cos< >= = =

∴BC與平面A'BD所成角的正弦值為


【解析】(1)根據(jù)題意作出輔助線利用勾股定理可得AE、CE再由A′E⊥CE得出結(jié)果。(2)利用余弦定理可得A ' F的值,從而得出A'F⊥平面ABCD,建立空間直角坐標(biāo)系如圖所示,求出向量CB和平面A′BD的法向量,根據(jù)兩個(gè)向量的數(shù)量積公式求出BC與平面A'BD所成角的正弦值即可。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解空間角的異面直線所成的角的相關(guān)知識(shí),掌握已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是 .假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒(méi)有影響;每人各次射擊是否擊中目標(biāo),相互之間也沒(méi)有影響.
(1)求甲射擊4次,至少1次未擊中目標(biāo)的概率;
(2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率;
(3)假設(shè)某人連續(xù)2次未擊中目標(biāo),則停止射擊.問(wèn):乙恰好射擊5次后,被中止射擊的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l:x+ y﹣c=0(c>0)為公海與領(lǐng)海的分界線,一艘巡邏艇在O處發(fā)現(xiàn)了北偏東60°海面上A處有一艘走私船,走私船正向停泊在公海上接應(yīng)的走私海輪B航行,以使上海輪后逃竄.已知巡邏艇的航速是走私船航速的2倍,且兩者都是沿直線航行,但走私船可能向任一方向逃竄.
(1)如果走私船和巡邏船相距6海里,求走私船能被截獲的點(diǎn)的軌跡;
(2)若O與公海的最近距離20海里,要保證在領(lǐng)海內(nèi)捕獲走私船(即不能截獲走私船的區(qū)域與公海不想交).則O,A之間的最遠(yuǎn)距離是多少海里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:根據(jù)兩角和與差的正弦公式,有: sin(α+β)=sinαcosβ+cosαsinβ﹣﹣﹣﹣﹣﹣①
sin(α﹣β)=sinαcosβ﹣cosαsinβ﹣﹣﹣﹣﹣﹣②
由①+②得sin(α+β)+sin(α﹣β)=2sinαcosβ﹣﹣﹣﹣﹣﹣③
令α+β=A,α﹣β=β 有α= ,β= 代入③得 sinA+sinB=2sin cos
(1)利用上述結(jié)論,試求sin15°+sin75°的值;
(2)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:cosA﹣cosB=﹣2sin cos

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P在正方體ABCD﹣A1B1C1D1的表面上運(yùn)動(dòng),且P到直線BC與直線C1D1的距離相等,如果將正方體在平面內(nèi)展開,那么動(dòng)點(diǎn)P的軌跡在展開圖中的形狀是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象與 的圖象的對(duì)稱軸相同,則f(x)的一個(gè)遞增區(qū)間為( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在四棱錐E﹣ABCD中,CB=CD=CE=1,AB=AD=AE= ,EC⊥BD,底面四邊形是個(gè)圓內(nèi)接四邊形,且AC是圓的直徑.

(1)求證:平面BED⊥平面ABCD;
(2)點(diǎn)P是平面ABE內(nèi)一點(diǎn),滿足DP∥平面BEC,求直線DP與平面ABE所成角的正弦值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若對(duì)任意的x∈D,均有g(shù)(x)≤f(x)≤h(x)成立,則稱函數(shù)f(x)為函數(shù)g(x)到函數(shù)h(x)在區(qū)間D上的“任性函數(shù)”.已知函數(shù)f(x)=kx,g(x)=x2﹣2x,h(x)=(x+1)(lnx+1),且f(x)是g(x)到h(x)在區(qū)間[1,e]上的“任性函數(shù)”,則實(shí)數(shù)k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于n維向量A=(a1 , a2 , …,an),若對(duì)任意i∈{1,2,…,n}均有ai=0或ai=1,則稱A為n維T向量.對(duì)于兩個(gè)n維T向量A,B,定義
(1)若A=(1,0,1,0,1),B=(0,1,1,1,0),求d(A,B)的值.
(2)現(xiàn)有一個(gè)5維T向量序列:A1 , A2 , A3…,若A1=(1,1,1,1,1)且滿足:d(Ai , Ai+1)=2,i∈N* . 求證:該序列中不存在5維T向量(0,0,0,0,0).

查看答案和解析>>

同步練習(xí)冊(cè)答案