對某市“四城同創(chuàng)”活動中800名志愿者的年齡抽樣調(diào)查統(tǒng)計后得到頻率分布直方圖(如圖),但是年齡組為[25,30)的數(shù)據(jù)不慎丟失,則依據(jù)此圖可得:

(1)[25,30)年齡組對應(yīng)小矩形的高度為________;

(2)據(jù)此估計該市“四城同創(chuàng)”活動中志愿者年齡在[25,35)的人數(shù)為________.

 

【答案】

(1)0.04 (2)440

【解析】(1)設(shè)[25,30)年齡組對應(yīng)小矩形的高度為h,則5(0.01+h+0.07+0.06+0.02)=1,h=0.04.(2)志愿者年齡在[25,35)的頻率為5(0.04+0.07)=0.55,故志愿者年齡在[25,35)的人數(shù)約為0.55×800=440.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在每年的春節(jié)后,某市政府都會發(fā)動公務(wù)員參與到植樹綠化活動中去.林業(yè)管理部門在植樹前,為了保證樹苗的質(zhì)量,都會在植樹前對樹苗進(jìn)行檢測.現(xiàn)從甲、乙兩種樹苗中各抽測了10株樹苗,量出它們的高度如下(單位:厘米):
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)畫出兩組數(shù)據(jù)的莖葉圖,并根據(jù)莖葉圖對甲、乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結(jié)論;
(2)設(shè)抽測的10株甲種樹苗高度平均值為
.
x
,將這10株樹苗的高度依次輸入,按程序框(如圖)進(jìn)行運算,問輸出的S大小為多少?并說明S的統(tǒng)計學(xué)意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校高一年級組建了A、B、C、D四個不同的“研究性學(xué)習(xí)”小組,要求高一年級學(xué)生必須參加,且只能參加一個小組的活動.假定某班的甲、乙、丙三名同學(xué)對這四個小組的選擇是等可能的.
(1)求甲、乙、丙三名同學(xué)選擇四個小組的所有選法種數(shù);
(2)求甲、乙、丙三名同學(xué)中至少有二人參加同一組活動的概率;
(3)設(shè)隨機變量X為甲、乙、丙三名同學(xué)參加A小組活動的人數(shù),求X的分布列與數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)習(xí)小組在暑期社會實踐活動中,通過對某商場一種品牌服裝銷售情況的調(diào)查發(fā)現(xiàn):該服裝在過去的一個月內(nèi)(以30天計)每件的銷售價格P(x)(百元)與時間x(天)的函數(shù)關(guān)系近似滿足P(x)=1+
k
x
(k
為正常數(shù)),日銷售量Q(x)(件)與時間x(天)的部分?jǐn)?shù)據(jù)如表所示:
x(天) 10 20 25 30
Q(x)(件) 110 120 125 120
已知第10天的日銷售收入為121(百元).
(1)求k的值;
(2)給出以下四種函數(shù)模型:①Q(mào)(x)=ax+b,②Q(x)=a|x-25|+b,③Q(x)=a•bx,④Q(x)=a•logbx.請你根據(jù)表中的數(shù)據(jù),從中選擇你認(rèn)為最合適的一種函數(shù)來描述日銷售量Q(x)(件)與時間x(天)的變化關(guān)系,并求出該函數(shù)的解析式;
(3)求該服裝的日銷售收入f(x)(1≤x≤30,x∈N)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省八校高三第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題

對某市“四城同創(chuàng)”活動中800名志愿者的年齡抽樣調(diào)查統(tǒng)計后得到頻率分布直方圖(如圖),但是年齡組為 的數(shù)據(jù)丟失,則依據(jù)此圖可得:

(1)年齡組對應(yīng)小矩形的高度為           ;

(2)據(jù)此估計該市“四城同創(chuàng)”活動中志愿者年齡在的人數(shù)             .

 

 

查看答案和解析>>

同步練習(xí)冊答案