假設每天從甲地去乙地的旅客人數(shù)是服從正態(tài)分布的隨機變量。記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為。

(I)求的值;(參考數(shù)據(jù):若,有,。)

(II)某客運公司用兩種型號的車輛承擔甲、乙兩地間的長途客運業(yè)務,每車每天往返一次,、兩種車輛的載客量分別為36人和60人,從甲地去乙地的運營成本分別為1600元/輛和2400元/輛。公司擬組建一個不超過21輛車的客運車隊,并要求型車不多于型車7輛。若每天要以不小于的概率運完從甲地去乙地的旅客,且使公司從甲地去乙地的運營成本最小,那么應配備型車、型車各多少輛?

【解析與答案】(I)

(II)設配備型車輛,型車輛,運營成本為元,由已知條件得

,而

作出可行域,得到最優(yōu)解。

所以配備型車5輛,型車12輛可使運營成本最小。

【相關知識點】正態(tài)分布,線性規(guī)劃

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•湖北)假設每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機變量.記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p0
(Ⅰ)求p0的值;
(參考數(shù)據(jù):若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974.)
(Ⅱ)某客運公司用A,B兩種型號的車輛承擔甲、乙兩地間的長途客運業(yè)務,每車每天往返一次,A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運成本分別為1600元/輛和2400元/輛.公司擬組建一個不超過21輛車的客運車隊,并要求B型車不多于A型車7輛.若每天要以不小于p0的概率運完從甲地去乙地的旅客,且使公司從甲地去乙地的營運成本最小,那么應配備A型車、B型車各多少輛?

查看答案和解析>>

科目:高中數(shù)學 來源:2013年普通高等學校招生全國統(tǒng)一考試湖北卷理數(shù) 題型:044

假設每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機變量.記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p0

(Ⅰ)求p0的值;(參考數(shù)據(jù):若X~N(μ,σ2),有P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<2σ)=0.9544,P(μ-3σ<X<μ+3σ)=0.9974.)

(Ⅱ)某客運公司用A、B兩種型號的車輛承擔甲、乙兩地間的長途客運業(yè)務,每車每天往返一次,A、B兩種車輛的載客量分別為36人和60人,從甲地去乙地的運營成本分別為1600元/輛和2400元/輛.公司擬組建一個不超過21輛車的客運車隊,并要求B型車不多于A型車7輛.若每天要以不小于p0的概率運完從甲地去乙地的旅客,且使公司從甲地去乙地的運營成本最小,那么應配備A型車、B型車各多少輛?

查看答案和解析>>

科目:高中數(shù)學 來源:2013年湖北省高考數(shù)學試卷(理科)(解析版) 題型:解答題

假設每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機變量.記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p
(Ⅰ)求p的值;
(參考數(shù)據(jù):若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974.)
(Ⅱ)某客運公司用A,B兩種型號的車輛承擔甲、乙兩地間的長途客運業(yè)務,每車每天往返一次,A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運成本分別為1600元/輛和2400元/輛.公司擬組建一個不超過21輛車的客運車隊,并要求B型車不多于A型車7輛.若每天要以不小于p的概率運完從甲地去乙地的旅客,且使公司從甲地去乙地的營運成本最小,那么應配備A型車、B型車各多少輛?

查看答案和解析>>

同步練習冊答案