設(shè)x,y滿足約束條件
x+y≥1
x-2y≥-2
3x-2y≤3
,則z=x+2y的最大值是(  )
A、6
B、
17
2
C、7
D、
29
4
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求出最優(yōu)解的坐標,代入目標函數(shù)得答案.
解答: 解:由約束條件
x+y≥1
x-2y≥-2
3x-2y≤3
作出可行域如圖,

聯(lián)立
x-2y=-2
3x-2y=3
,解得B(
5
2
,
9
4
).
化z=x+2y得y=-
x
2
+
z
2
,由圖可知,當(dāng)直線y=-
x
2
+
z
2
過B時直線在y軸上的截距最大,z最大為z=
5
2
+2×
9
4
=7.
故選:C.
點評:本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公差不為0的等差數(shù)列,{bn}是等比數(shù)列,其中a1=b1=1,a4=7,a5=b2,且存在常數(shù)a,β使得對每一個正數(shù)n都有an=1ogabn+β,則a+β=( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三角形的三邊均為整數(shù),且最長的邊為11,則這樣的三角形的個數(shù)有( 。﹤.
A、25B、26C、32D、36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知整數(shù)ω滿足|
ω-3
ω
|
2
3
,則使函數(shù)y=2sin(ωx+
π
3
)的周期不小于
π
3
的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
|x-2|-1
log2(x-1)
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足
x-y+1≥0
y≥0
x≤2
,則z=2x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b都是區(qū)間[0,4]內(nèi)任取的一個數(shù),那么函數(shù)f(x)=
1
3
x
3-ax2+b2x+2在x∈R上是增函數(shù)的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sin
x
4
cos
x
4
+cos
x
2
,x∈R的部分圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ) 設(shè)點B是圖象上的最高點,點A是圖象與x軸的交點,求tan∠BAO的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cos
3x
2
,sin
3x
2
),
b
=(cos
x
2
,-sin
x
2
),且x∈[0,
π
2
],若|
a
+
b
|=2
a
b
,則sin2x+tanx=(  )
A、-1B、0C、2D、-2

查看答案和解析>>

同步練習(xí)冊答案