用隨機模擬方法,近似計算由曲線y=x2及直線y=1所圍成部分的面積S.利用計算機產(chǎn)生N組數(shù),每組數(shù)由區(qū)間[0,1]上的兩個均勻隨機數(shù)a1=RAND,b=RAND組成,然后對a1進行變換a=2(a1-0.5),由此得到N個點(xi,yi)(i=1,2,…,N).再數(shù)出其中滿足xi2≤yi≤1(i=1,2,…,N)的點數(shù)N1,那么由隨機模擬方法可得到的近似值為( 。
A、
2N1
N
B、
N1
N
C、
N1
2N
D、
4N1
N
考點:隨機數(shù)的含義與應(yīng)用
專題:計算題,概率與統(tǒng)計
分析:先由計算器做模擬試驗結(jié)果試驗估計,即可得出結(jié)論.
解答: 解:由題意,對a1進行變換a=2(a1-0.5),由此得到N個點(xi,yi)(i=1,2,…,N).再數(shù)出其中滿足xi2≤yi≤1(i=1,2,…,N)的點數(shù)N1,所以由隨機模擬方法可得到的近似值為
2N1
N
,
故選:A.
點評:本題考查隨機數(shù)的含義與應(yīng)用,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,圓C的參數(shù)方程為
x=-
2
2
+rcosθ
y=-
2
2
+rsinθ
(θ為參數(shù),r>0),以O(shè)為極點,x軸非負半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+
π
4
)
=1,
(Ⅰ)寫出圓C的普通方程和直線l的直角坐標(biāo)方程;
(Ⅱ)若圓C上的點到直線l的最大距離為3,求半徑r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(
x
-
2
x2
)n
的展開式中,所有項的二項式系數(shù)之和為1024.
(1)求n的值;
(2)求展開式中的常數(shù)項;
(3)求展開式中含有理項的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓m=1與x軸相切,圓心C在射線3x-y=0(x>0)上,直線x-y=0被圓C截得的弦長為2
7

(1)求圓C標(biāo)準(zhǔn)方程;
(2)已知點Q(0,-1),經(jīng)過點Q直線l與圓C相切于P點,求|QP|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+4(x≤0)
x2-2x(0<x≤4)
-x+2(x>4)

(1)求f{f[f(5)]}的值;
(2)畫出函數(shù)f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4
5
0-(1-0.5-2)÷(3
3
8
)
1
3
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={-3,-1,0,1,3},集合B={-2,-1,0,1},則A∩B=( 。
A、{-3,1,3}
B、{1}
C、{-1,0,1}
D、{-1,0,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

檢查汽車排放尾氣的合格率,其環(huán)保單位在一路口隨機抽查,這種抽樣是( 。
A、簡單隨機抽樣B、隨機數(shù)表法
C、系統(tǒng)抽樣D、分層抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙C的圓心C(3,1),被x軸截得的弦長為4
2

(Ⅰ)求圓C的方程;
(Ⅱ)若圓C與直線x-y+a=0交于A,B兩點,且OA⊥OB,求a的值.

查看答案和解析>>

同步練習(xí)冊答案