集合M={α|數(shù)學(xué)公式}與N={α|數(shù)學(xué)公式}之間的關(guān)系是


  1. A.
    M⊆N
  2. B.
    N⊆M
  3. C.
    M=N
  4. D.
    M∩N=∅
A
分析:分別判斷兩個(gè)集合元素的關(guān)系,然后判斷集合的關(guān)系.
解答:對應(yīng)集合M,.因?yàn)镹={α|},
所以M⊆N.
故選A.
點(diǎn)評:本題主要考查集合關(guān)系的判斷,通過判斷元素的關(guān)系來判斷集合關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合W是滿足下列兩個(gè)條件的無窮數(shù)列{an}的集合:①
an+an+22
an+1
;②an≤M,其中n∈N*,M是與n無關(guān)的常數(shù).
(1)若{an}是等差數(shù)列,Sn是其前n項(xiàng)的和,a3=4,S3=18,證明:{Sn}∈W
(2)設(shè)數(shù)列{bn}的通項(xiàng)為bn=5n-2n,且{bn}∈W,求M的取值范圍;
(3)設(shè)數(shù)列{cn}的各項(xiàng)均為正整數(shù),且{cn}∈W,證明:cn<cn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合W是滿足下列兩個(gè)條件的無窮數(shù)列{an}的集合:①
an+an+22
≤an+1,②an≤M.其中n∈N+,M是與n無關(guān)的常數(shù).
(1)設(shè)數(shù)列{bn}的通項(xiàng)為bn=5n-2n,證明:{bn}∈W;
(2)若{an}是等差數(shù)列,Sn是其前n項(xiàng)的和,a4=2,S4=20,證明:{Sn}∈W并求M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•莆田模擬)設(shè)集合W是滿足下列兩個(gè)條件的無窮數(shù)列{an}的集合:①
an+an+2
2
an+1
;②an≤M,其中n∈N*,M是與n無關(guān)的常數(shù).現(xiàn)給出下列的四個(gè)無窮數(shù)列:(1)an=2n-n2;(2)an=3n-2n;(3)an=2n;(4)an=3-(
1
3
)n
,寫出上述所有屬于集合W的序號
(1)(4)
(1)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合W是滿足下列兩個(gè)條件的無窮數(shù)列{an}的集合:①
an+an+2
2
an+1
②an≤M,其中n∈N*,M是與n無關(guān)的常數(shù)
(1)若{an}是等差數(shù)列,Sn是其前n項(xiàng)的和,a3=4,S3=18,試探究{Sn}與集合W之間的關(guān)系;
(2)設(shè)數(shù)列{bn}的通項(xiàng)為bn=5n-2n,且{bn}∈W,M的最小值為m,求m的值;
(3)在(2)的條件下,設(shè)Cn=
1
5
[bn+(m-5)n]+
2
,求證:數(shù)列{Cn}中任意不同的三項(xiàng)都不能成為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•朝陽區(qū)二模)設(shè)A是滿足下列兩個(gè)條件的無窮數(shù)列{an}的集合:
an+an+22
an+1
;     ②an≤M.其中n∈N*,M是與n無關(guān)的常數(shù).
(Ⅰ)若{an}是等差數(shù)列,Sn是其前n項(xiàng)的和,a3=4,S3=18,證明:{Sn}∈A;
(Ⅱ)對于(Ⅰ)中數(shù)列{an},正整數(shù)n1,n2,…,nt…(t∈N*)滿足7<n1<n2<…<nt<…(t∈N*),并且使得a6,a7an1,an2,…,ant,…成等比數(shù)列. 若bm=10m-nm(m∈N*),則{bm}∈A是否成立?若成立,求M的取值范圍,若不成立,請說明理由;
(Ⅲ)設(shè)數(shù)列{cn}的各項(xiàng)均為正整數(shù),且{cn}∈A,證明:cn≤cn+1

查看答案和解析>>

同步練習(xí)冊答案