7.已知函數(shù) f(x)=$\left\{\begin{array}{l}{-2x(-1≤x≤0)}\\{\sqrt{x}(0<x≤1)}\end{array}\right.$,則下列圖象正確的是( 。
A.B.C.D.

分析 根據(jù)已知中分段函數(shù)的解析式,結(jié)合正比例函數(shù)和冪函數(shù)的圖象和性質(zhì),分析函數(shù)圖象的形狀,可得答案.

解答 解:函數(shù) f(x)=$\left\{\begin{array}{l}{-2x(-1≤x≤0)}\\{\sqrt{x}(0<x≤1)}\end{array}\right.$的圖象,
在y軸左側(cè)是線段,在y軸右側(cè)為凸增的曲線,
故選:D

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)的圖象,正比例函數(shù)和冪函數(shù)的圖象和性質(zhì),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.有五個(gè)命題如下:
(1)集合N*中最小元素是1;
(2)若a∈N*,b∈N*,則(a-b)∈N*;
(3)空集是任何集合的真子集;
(4)函數(shù)f(x)=-$\frac{2}{x}$在(-2,0)∪(0,2)上是增函數(shù);
(5)若集合A={x|1<x<3},集合B={t|1<t<3},則A≠B;
其中正確的命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=2ax2+(a+4)x+lnx.
(1)若f(x)在x=$\frac{1}{4}$處的切線與直線4x+y=0平行,求a的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知全集U={1,2,3,4,5,6},A={2,4,5},B={1,3,5},則(∁UA)∩(∁UB)=( 。
A.[6}B.{5}C.{1,2,3,4}D.{5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列命題中錯(cuò)誤的是( 。
A.命題“若 x2-5x+6=0,則x=2”的逆否命題是“若 x≠2,則x2-5x+6≠0”
B.命題“角α的終邊在第一象限,則α是銳角”的逆命題為真命題
C.已知命題 p和 q,若p∨q 為假命題,則命題 p與q中必一真一假
D.命題“若x>y,則 x>|y|”的逆命題是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,在三棱錐P-ABC中,PA⊥底面ABC,D是PC的中點(diǎn). 已知∠BAC=$\frac{π}{2}$,AB=2,AC=2,PA=2.求:
(1)三棱錐P-ABC的體積;
(2)異面直線BC與AD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知四棱錐S-ABCD中,SA⊥平面ABCD,∠ABC=∠BCD=90°,且SA=AB=BC=2CD,E是邊SB的中點(diǎn).
(1)求證:CE∥平面SAD;
(2)取BC中點(diǎn)M,求證平面SAC⊥平面SMD;
(3)求三棱錐S-ECD與四棱錐E-ABCD的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是(  )
A.y=$\frac{1}{x}$B.y=-x2+1C.y=-e-x-exD.y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx+ax2+1.
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的極值;
(2)當(dāng)a>0時(shí),證明:存在正實(shí)數(shù)λ,使得|${\frac{1-x}{f(x)-lnx}}$|≤λ恒成立.

查看答案和解析>>

同步練習(xí)冊答案